研究I的结果表明:线性平衡方程(LBE)在热带地区不适用,而进一步改进方向是削弱LBE在该区域的约束程度。本文以此为基础,在GRAPES(global/regional assimilation and prediction system)全球变分同化系统中引入动力与统计混合平衡约束方...研究I的结果表明:线性平衡方程(LBE)在热带地区不适用,而进一步改进方向是削弱LBE在该区域的约束程度。本文以此为基础,在GRAPES(global/regional assimilation and prediction system)全球变分同化系统中引入动力与统计混合平衡约束方案。新方案在逐层求解LBE的基础上增加垂直方向的线性回归,回归系数随纬度和高度变化。针对背景误差协方差的分析表明,新方案可以更好的保证独立分析变量间预报误差不相关的基本要求,并大幅度减小热带地区平衡气压预报误差方差的量值和占总方差的比例。单点试验结果表明,与LBE方案相比,新方案对中、高纬影响很小,但在热带地区成功实现了风、压场分析的解耦,两者分析更为独立。并且,虽未考虑具体波动模态,但新方案给出的风、压场协相关结构与研究I的理论分析结果相近。一个月的同化循环与预报结果表明,引入新方案后,赤道外地区的同化预报效果为中性偏正,而热带地区风场的同化预报效果显著提高,LBE方案中平流层低层的风场同化预报异常被基本消除。展开更多
本文在GRAPES_TMM(Global/Regional Assimilation and Prediction System for Tropical Mesoscale Model)——中国南海台风模式版(面向南海和东南亚)中发展和引进了KA95(Kim and Arakawa,1995)地形重力波拖曳参数化方案(GWDO),并对2012...本文在GRAPES_TMM(Global/Regional Assimilation and Prediction System for Tropical Mesoscale Model)——中国南海台风模式版(面向南海和东南亚)中发展和引进了KA95(Kim and Arakawa,1995)地形重力波拖曳参数化方案(GWDO),并对2012年主要的9个登陆台风进行了试验对比研究,考察了不同标准Richardson数(c Ri)的GWDO试验对台风路径和强度预报的影响。结果表明,在引入地形重力波拖曳参数化过程后,模式对台风登陆时路径和强度的预报能力均要有提高,对台风预报时长越长,GWDO的影响也更为显著。对双台风"SAOLA"和"DAMREY"试验结果表明,GWDO对台风外围距台风中心150 km的对流层中下层风速减弱较为明显,减弱了GRAPES区域模式对台风强度预报偏强的现象,对台风强度长时间预报改善更为明显。不同标准c Ri对重力波拖曳力的计算较为敏感,当c Ri取1.0时,动能迅速的在低层被频散,能量无法有效地上传;c Ri取0.25时,大部分的能量在中高层被频散。总的来说,c Ri取0.75时对台风路径和强度预报改进更为显著,其结果可为业务预报提供指导意义。展开更多
In this paper, a heavy rainfall process occurring in the Huaihe River Basin during 9-10 July 2005 is studied by the new generation numerical weather prediction model system-GRAPES, from the view of different initial f...In this paper, a heavy rainfall process occurring in the Huaihe River Basin during 9-10 July 2005 is studied by the new generation numerical weather prediction model system-GRAPES, from the view of different initial field effects on the prediction of the model. Several numerical experiments are conducted with the initial conditions and lateral boundary fields provided by T213 L31 and NCEP final analyses, respectively. The sensitivity of prediction products generated by GRAPES to different initial conditions, including effects of three-dimensional variational assimilation on the results, is discussed. After analyzing the differences between the two initial fields and the four simulated results, the memonic ability of the model to initial fields and their influences on precipitation forecast are investigated. Analyses show the obvious differences of sub-synoptic scale between T213 and NCEP initial fields, which result in the corresponding different simulation results, and the differences do not disappear with the integration running. It also shows that for the same initial field whether it has data assimilation or not, it only obviously influences the GRAPES model results in the initial 24 h. Then the differences reduce. In addition, both the location and intensity of heavy rain forecasted by GRAPES model Further is very close to the fact, but the forecasting area of strong torrential rain has some differences from the fact. For the same initial field when it has assimilation, the 9-12-, 12-24-, and 0-24-h precipitation forecasts of the model are better than those without assimilation. All these suggest that the ability of GRAPES numerical prediction depends on the different initial fields and lateral boundary conditions to some extent, and the differences of initial fields will determine the differences of GRAPES simulated results.展开更多
文摘研究I的结果表明:线性平衡方程(LBE)在热带地区不适用,而进一步改进方向是削弱LBE在该区域的约束程度。本文以此为基础,在GRAPES(global/regional assimilation and prediction system)全球变分同化系统中引入动力与统计混合平衡约束方案。新方案在逐层求解LBE的基础上增加垂直方向的线性回归,回归系数随纬度和高度变化。针对背景误差协方差的分析表明,新方案可以更好的保证独立分析变量间预报误差不相关的基本要求,并大幅度减小热带地区平衡气压预报误差方差的量值和占总方差的比例。单点试验结果表明,与LBE方案相比,新方案对中、高纬影响很小,但在热带地区成功实现了风、压场分析的解耦,两者分析更为独立。并且,虽未考虑具体波动模态,但新方案给出的风、压场协相关结构与研究I的理论分析结果相近。一个月的同化循环与预报结果表明,引入新方案后,赤道外地区的同化预报效果为中性偏正,而热带地区风场的同化预报效果显著提高,LBE方案中平流层低层的风场同化预报异常被基本消除。
文摘本文在GRAPES_TMM(Global/Regional Assimilation and Prediction System for Tropical Mesoscale Model)——中国南海台风模式版(面向南海和东南亚)中发展和引进了KA95(Kim and Arakawa,1995)地形重力波拖曳参数化方案(GWDO),并对2012年主要的9个登陆台风进行了试验对比研究,考察了不同标准Richardson数(c Ri)的GWDO试验对台风路径和强度预报的影响。结果表明,在引入地形重力波拖曳参数化过程后,模式对台风登陆时路径和强度的预报能力均要有提高,对台风预报时长越长,GWDO的影响也更为显著。对双台风"SAOLA"和"DAMREY"试验结果表明,GWDO对台风外围距台风中心150 km的对流层中下层风速减弱较为明显,减弱了GRAPES区域模式对台风强度预报偏强的现象,对台风强度长时间预报改善更为明显。不同标准c Ri对重力波拖曳力的计算较为敏感,当c Ri取1.0时,动能迅速的在低层被频散,能量无法有效地上传;c Ri取0.25时,大部分的能量在中高层被频散。总的来说,c Ri取0.75时对台风路径和强度预报改进更为显著,其结果可为业务预报提供指导意义。
基金Supported by Anhui Meteorological Bureau Scientific Item under Grant No.0504,Anhui Meteorological Bureau General Project No.0601 and NKBRDPC No.2004CB418304.
文摘In this paper, a heavy rainfall process occurring in the Huaihe River Basin during 9-10 July 2005 is studied by the new generation numerical weather prediction model system-GRAPES, from the view of different initial field effects on the prediction of the model. Several numerical experiments are conducted with the initial conditions and lateral boundary fields provided by T213 L31 and NCEP final analyses, respectively. The sensitivity of prediction products generated by GRAPES to different initial conditions, including effects of three-dimensional variational assimilation on the results, is discussed. After analyzing the differences between the two initial fields and the four simulated results, the memonic ability of the model to initial fields and their influences on precipitation forecast are investigated. Analyses show the obvious differences of sub-synoptic scale between T213 and NCEP initial fields, which result in the corresponding different simulation results, and the differences do not disappear with the integration running. It also shows that for the same initial field whether it has data assimilation or not, it only obviously influences the GRAPES model results in the initial 24 h. Then the differences reduce. In addition, both the location and intensity of heavy rain forecasted by GRAPES model Further is very close to the fact, but the forecasting area of strong torrential rain has some differences from the fact. For the same initial field when it has assimilation, the 9-12-, 12-24-, and 0-24-h precipitation forecasts of the model are better than those without assimilation. All these suggest that the ability of GRAPES numerical prediction depends on the different initial fields and lateral boundary conditions to some extent, and the differences of initial fields will determine the differences of GRAPES simulated results.