杆系DEM(离散元,discrete element method)是求解结构强非线性问题的有效方法,但随着结构数值计算规模的扩大,杆系DEM所需要的计算时间也随之急剧膨胀。为了提高杆系DEM的计算效率,该研究提出单元级并行、节点级并行的计算方法,基于CPU-...杆系DEM(离散元,discrete element method)是求解结构强非线性问题的有效方法,但随着结构数值计算规模的扩大,杆系DEM所需要的计算时间也随之急剧膨胀。为了提高杆系DEM的计算效率,该研究提出单元级并行、节点级并行的计算方法,基于CPU-GPU异构平台,建构了杆系DEM并行计算框架,编制了相应的几何非线性计算程序,实现了杆系DEM的GPU多线程并行计算。对杆系DEM并行算法的设计主要包括数据存储方式、GPU线程计算模式、节点物理量集成方式以及数据传输优化。最后采用大型三维框架、球壳结构模型分别验证了杆系DEM并行算法的计算精度,并对杆系DEM并行算法进行了计算性能测试,测试结果表明杆系DEM并行算法加速比最高可达12.7倍。展开更多
为实现大规模电力系统潮流的准确、快速求解,以非精确牛顿法为基础,提出一种基于CPU-GPU异构平台的电力系统潮流并行计算方法。修正方程组的求解是牛拉法潮流计算中最为耗时的部分,提升修正方程组的求解效率可有效提升潮流计算效率。为...为实现大规模电力系统潮流的准确、快速求解,以非精确牛顿法为基础,提出一种基于CPU-GPU异构平台的电力系统潮流并行计算方法。修正方程组的求解是牛拉法潮流计算中最为耗时的部分,提升修正方程组的求解效率可有效提升潮流计算效率。为此,根据雅可比矩阵的不对称不定性,采用稳定双正交共轭梯度(bi-conjugate gradient stabilized,BICGSTAB)法进行修正方程组的求解。进一步,为改善BICGSTAB法的收敛性,根据雅可比矩阵的稀疏性和类对角占优性,提出一种改进PPAT(Preconditioner with sparsity Pattern of AT,PPAT)预处理器和改进Jacobi预处理器相结合的两阶段预处理方法,并对雅可比矩阵进行预处理,提升BICGSTAB法的收敛性能。然后,将上述潮流算法移植到CPU-GPU异构平台,实现电力系统潮流的并行求解。最后,通过不同测试系统算例对所提方法进行验证、分析。结果表明,所提潮流并行计算方法可实现电力系统潮流的准确、快速求解。展开更多
文摘杆系DEM(离散元,discrete element method)是求解结构强非线性问题的有效方法,但随着结构数值计算规模的扩大,杆系DEM所需要的计算时间也随之急剧膨胀。为了提高杆系DEM的计算效率,该研究提出单元级并行、节点级并行的计算方法,基于CPU-GPU异构平台,建构了杆系DEM并行计算框架,编制了相应的几何非线性计算程序,实现了杆系DEM的GPU多线程并行计算。对杆系DEM并行算法的设计主要包括数据存储方式、GPU线程计算模式、节点物理量集成方式以及数据传输优化。最后采用大型三维框架、球壳结构模型分别验证了杆系DEM并行算法的计算精度,并对杆系DEM并行算法进行了计算性能测试,测试结果表明杆系DEM并行算法加速比最高可达12.7倍。
文摘为实现大规模电力系统潮流的准确、快速求解,以非精确牛顿法为基础,提出一种基于CPU-GPU异构平台的电力系统潮流并行计算方法。修正方程组的求解是牛拉法潮流计算中最为耗时的部分,提升修正方程组的求解效率可有效提升潮流计算效率。为此,根据雅可比矩阵的不对称不定性,采用稳定双正交共轭梯度(bi-conjugate gradient stabilized,BICGSTAB)法进行修正方程组的求解。进一步,为改善BICGSTAB法的收敛性,根据雅可比矩阵的稀疏性和类对角占优性,提出一种改进PPAT(Preconditioner with sparsity Pattern of AT,PPAT)预处理器和改进Jacobi预处理器相结合的两阶段预处理方法,并对雅可比矩阵进行预处理,提升BICGSTAB法的收敛性能。然后,将上述潮流算法移植到CPU-GPU异构平台,实现电力系统潮流的并行求解。最后,通过不同测试系统算例对所提方法进行验证、分析。结果表明,所提潮流并行计算方法可实现电力系统潮流的准确、快速求解。