Early to Middle Ordovician strata, including Wenquan quartzite, occur widely in the Himalaya, Lhasa, and south Qiangtang blocks. The Wenquan quartzite occurs on the south side of the Lungmuco-Shuanghu Suture in the Qi...Early to Middle Ordovician strata, including Wenquan quartzite, occur widely in the Himalaya, Lhasa, and south Qiangtang blocks. The Wenquan quartzite occurs on the south side of the Lungmuco-Shuanghu Suture in the Qiangtang area, Tibet. A total of 145 analyses on detrital zircons from the quartzite show five age ranges of 520-700, ca. 800, 900-1100, 1800-1900, and 2400-2500 Ma, with particularly distinct age peaks of 625 and 950 Ma. The reliable youngest detrital zircon age is 525 Ma, and the oldest, 3180 Ma. Detrital zircons show large variations in Hf isotope composition, with depleted mantle model ages t DM (Hf) ranging from 750 to 3786 Ma. Based on data obtained in this study and by others, the main conclusions are as follows: 1) Low-grade metamorphic sedimentary rocks are distributed extensively in the south of the Lungmuco-Shuanghu Suture and are Phanerozoic in age; 2) Pan-African and Grenville-Jinning tectono-thermal events were well developed in the source region of the Wenquan quartzite; 3) the source region shows crustal addition and recycling of different periods; 4) Wenquan quartzite was derived from the Gondwana metamorphic basement, suggesting that the Qiangtang block is a Gondwanan fragment.展开更多
The wide-angle seismic profile between Menglian and Malong crosses the Baoshan block (Gondwana-typed), and Simao and southwestern Yangtze blocks (Yangtze-typed). By in-terpreting the wide-angle seismic data, we obtain...The wide-angle seismic profile between Menglian and Malong crosses the Baoshan block (Gondwana-typed), and Simao and southwestern Yangtze blocks (Yangtze-typed). By in-terpreting the wide-angle seismic data, we obtained the seismic crust/upper mantle structure of P-wave velocities together with the seismic reflections of these three blocks, Changning- Menglian and Mojiang suture zones among the mentioned three blocks. Our interpreting results demonstrate that the P-wave crustal velocity of Simao block is slower than that of Baoshan and southwestern Yangtze block and the crustal thickness gradually thickens from the Baoshan block, Simao to southwestern Yangtze block. Crustal reflection patterns of these three blocks have dis-tinct differences too. For the Gondwana-typed blocks, seismic reflections in the upper crust are well developed while in middle-lower crust they are very weak. The crustal reflections in the Yangtze block are very well developed. The crustal reflection patterns in Simao and southwest-ern Yangtze blocks are distinguishable. The average thickness of the crust in the studied area is about 40 km. And we make some discussions on the crustal thickening model of the three blocks in western Yunnan and tectonic setting of seismic developing and interaction of Gondwana and Yangtze blocks.展开更多
The Cambrian explosion has long been a basic research frontier that concerns many scientific fields. Here we discuss the cause-effect links of the Cambrian explosion on the basis of first appearances of animal phyla i...The Cambrian explosion has long been a basic research frontier that concerns many scientific fields. Here we discuss the cause-effect links of the Cambrian explosion on the basis of first appearances of animal phyla in the fossil record, divergence time, environmental changes, Gene Regulatory Networks, and ecological feedbacks. The first appearances of phyla in the fos- sil record are obviously diachronous but relatively abrupt, concentrated in the first three stages of the Cambrian period (541- 514 Ma). The actual divergence time may be deep or shallow. Since the gene regulatory networks (GRNs) that control the de- velopment of metazoans were in place before the divergence, the establishment of GRNs is necessary but insufficient for the Cambrian explosion. Thus the Cambrian explosion required environmental triggers. Nutrient availability, oxygenation, and change of seawater composition were potential environmental triggers. The nutrient input, e.g., the phosphorus enrichment in the environment, would cause excess primary production, but it is not directly linked with diversity or disparity. Further in- crease of oxygen level and change of seawater composition during the Ediacaran-Cambrian transition were probably crucial environmental factors that caused the Cambrian explosion, but more detailed geochemical data are required. Many researchers prefer that the Cambrian explosion is an ecological phenomenon, that is, the unprecedented ecological success of ruetazoans during the Early Cambrian, but ecological effects need diverse and abundant animals. Therefore, the establishment of the eco- logical complexity among animals, and between animals and environments, is a consequence rather than a cause of the Cam- brian explosion. It is no doubt that positive ecological feedbacks could facilitate the increase of biodiversity. In a word, the Cambrian explosion happened when environmental changes crossed critical thresholds, led to the initial formation of the meta- zoan-doruinated ecosystem through a series of kn展开更多
The Neo-Tethys Ocean was an eastward-gaping triangular oceanic embayment between Laurasia to the north and Gondwana to the south.The Neo-Tethys Ocean was initiated from the Early Permian with mircoblocks rifted from t...The Neo-Tethys Ocean was an eastward-gaping triangular oceanic embayment between Laurasia to the north and Gondwana to the south.The Neo-Tethys Ocean was initiated from the Early Permian with mircoblocks rifted from the northern margin of Gondwana.As the microblocks drifted northwards,the Neo-Tethys Ocean was expanded.Most of these microblocks collided with the Eurasia continent in the Late Triassic,leading to the final closure of the Paleo-Tethys Ocean,followed by oceanic subduction of the Neo-Tethys oceanic slab beneath the newly formed southern margin of the Eurasia continent.As the splitting of Gondwana continued,African-Arabian,Indian and Australian continents were separated from Gondwana and moved northwards at different rates.Collision of these blocks with the Eurasia continent occurred at different time during the Cenozoic,resulting in the closure of the Neo-Tethys Ocean and building of the most significant Alps-Zagros-Himalaya orogenic belt on Earth.The tectonic evolution of the Neo-Tethys Ocean shows different characteristics from west to east:Multi-oceanic basins expansion,bidirectional subduction and microblocks collision dominate in the Mediterranean region;northward oceanic subduction and diachronous continental collision along the Zagros suture occur in the Middle East;the Tibet and Southeast Asia are characterized by multi-block riftings from Gondwana and multi-stage collisions with the Eurasia continent.The negative buoyancy of subducting oceanic slabs can be considered as the main engine for northward drifting of Gondwana-derived blocks and subduction of the Neo-Tethys Ocean.Meanwhile,mantle convection and counterclockwise rotation of Gondwana-derived blocks and the Gondwana continent around an Euler pole in West Africa in non-free boundary conditions also controlled the evolution of the Neo-Tethys Ocean.展开更多
The new plants documented here, including a representative of the trimerophytesPsilophyton primitiuum sp. nov., a questionable rhyniophyte or trimerophyteHedeia sinica sp. nov., a prelycopodBragwanathia sp. and two sp...The new plants documented here, including a representative of the trimerophytesPsilophyton primitiuum sp. nov., a questionable rhyniophyte or trimerophyteHedeia sinica sp. nov., a prelycopodBragwanathia sp. and two species of zosterophyllophytes,Zosterophyllum australianum Lang and Cookson 1930 and2. sp. 1, from the Posongchong Formation of southeastern Yunnan, China, add to the known floral diversity of the Early Devonian of this region. Two sections of the Posongchong Formation, Changputang section of Wenshan district and Gegu section of Mengzi district also are introduced. After comparing the plants with those of the coeval flora of Australia and considering the data of recent paleocontinental reconstructions, the authors suggest that there is a northeastern Gondwana phytogeographic unit during the early Devonian comprising Australia, South China Block and perhaps Shan-Thai Block. The similarity of the floral component between Australia and South China is discussed. Because both Australia and South China also have dominant or endemic taxa, each might be recognized as a subunit, separately characterized byHedeia for Australia andEophyllophyton for South China.展开更多
基金supported by Ministry of Land and Resources of the Peoples' Republic of China (Grant No. 1212010811033)National Natural Science Foundation of China (Grant Nos. 40672147, 40872146)
文摘Early to Middle Ordovician strata, including Wenquan quartzite, occur widely in the Himalaya, Lhasa, and south Qiangtang blocks. The Wenquan quartzite occurs on the south side of the Lungmuco-Shuanghu Suture in the Qiangtang area, Tibet. A total of 145 analyses on detrital zircons from the quartzite show five age ranges of 520-700, ca. 800, 900-1100, 1800-1900, and 2400-2500 Ma, with particularly distinct age peaks of 625 and 950 Ma. The reliable youngest detrital zircon age is 525 Ma, and the oldest, 3180 Ma. Detrital zircons show large variations in Hf isotope composition, with depleted mantle model ages t DM (Hf) ranging from 750 to 3786 Ma. Based on data obtained in this study and by others, the main conclusions are as follows: 1) Low-grade metamorphic sedimentary rocks are distributed extensively in the south of the Lungmuco-Shuanghu Suture and are Phanerozoic in age; 2) Pan-African and Grenville-Jinning tectono-thermal events were well developed in the source region of the Wenquan quartzite; 3) the source region shows crustal addition and recycling of different periods; 4) Wenquan quartzite was derived from the Gondwana metamorphic basement, suggesting that the Qiangtang block is a Gondwanan fragment.
基金supported by a“973”Project of the Ministry of Science and Technology of China(Grant No.2002CB412604)by the Key Project of the Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX2-109).
文摘The wide-angle seismic profile between Menglian and Malong crosses the Baoshan block (Gondwana-typed), and Simao and southwestern Yangtze blocks (Yangtze-typed). By in-terpreting the wide-angle seismic data, we obtained the seismic crust/upper mantle structure of P-wave velocities together with the seismic reflections of these three blocks, Changning- Menglian and Mojiang suture zones among the mentioned three blocks. Our interpreting results demonstrate that the P-wave crustal velocity of Simao block is slower than that of Baoshan and southwestern Yangtze block and the crustal thickness gradually thickens from the Baoshan block, Simao to southwestern Yangtze block. Crustal reflection patterns of these three blocks have dis-tinct differences too. For the Gondwana-typed blocks, seismic reflections in the upper crust are well developed while in middle-lower crust they are very weak. The crustal reflections in the Yangtze block are very well developed. The crustal reflection patterns in Simao and southwest-ern Yangtze blocks are distinguishable. The average thickness of the crust in the studied area is about 40 km. And we make some discussions on the crustal thickening model of the three blocks in western Yunnan and tectonic setting of seismic developing and interaction of Gondwana and Yangtze blocks.
基金supported by National Basic Research Program of China (Grant No. 2013CB835000)National Natural Science Foundation of China (Grant Nos. 40925005, 41272036)+1 种基金the "111 Project" (Grant No. P201102007)the key project from the State Key Laboratory of Continental Dynamics, Northwest University
文摘The Cambrian explosion has long been a basic research frontier that concerns many scientific fields. Here we discuss the cause-effect links of the Cambrian explosion on the basis of first appearances of animal phyla in the fossil record, divergence time, environmental changes, Gene Regulatory Networks, and ecological feedbacks. The first appearances of phyla in the fos- sil record are obviously diachronous but relatively abrupt, concentrated in the first three stages of the Cambrian period (541- 514 Ma). The actual divergence time may be deep or shallow. Since the gene regulatory networks (GRNs) that control the de- velopment of metazoans were in place before the divergence, the establishment of GRNs is necessary but insufficient for the Cambrian explosion. Thus the Cambrian explosion required environmental triggers. Nutrient availability, oxygenation, and change of seawater composition were potential environmental triggers. The nutrient input, e.g., the phosphorus enrichment in the environment, would cause excess primary production, but it is not directly linked with diversity or disparity. Further in- crease of oxygen level and change of seawater composition during the Ediacaran-Cambrian transition were probably crucial environmental factors that caused the Cambrian explosion, but more detailed geochemical data are required. Many researchers prefer that the Cambrian explosion is an ecological phenomenon, that is, the unprecedented ecological success of ruetazoans during the Early Cambrian, but ecological effects need diverse and abundant animals. Therefore, the establishment of the eco- logical complexity among animals, and between animals and environments, is a consequence rather than a cause of the Cam- brian explosion. It is no doubt that positive ecological feedbacks could facilitate the increase of biodiversity. In a word, the Cambrian explosion happened when environmental changes crossed critical thresholds, led to the initial formation of the meta- zoan-doruinated ecosystem through a series of kn
基金supported by the National Natural Science Foundation of China(Grant No.41688103)the International Cooperation Program of the Chinese Academy of Sciences(Grant No.GJHZ1776)。
文摘The Neo-Tethys Ocean was an eastward-gaping triangular oceanic embayment between Laurasia to the north and Gondwana to the south.The Neo-Tethys Ocean was initiated from the Early Permian with mircoblocks rifted from the northern margin of Gondwana.As the microblocks drifted northwards,the Neo-Tethys Ocean was expanded.Most of these microblocks collided with the Eurasia continent in the Late Triassic,leading to the final closure of the Paleo-Tethys Ocean,followed by oceanic subduction of the Neo-Tethys oceanic slab beneath the newly formed southern margin of the Eurasia continent.As the splitting of Gondwana continued,African-Arabian,Indian and Australian continents were separated from Gondwana and moved northwards at different rates.Collision of these blocks with the Eurasia continent occurred at different time during the Cenozoic,resulting in the closure of the Neo-Tethys Ocean and building of the most significant Alps-Zagros-Himalaya orogenic belt on Earth.The tectonic evolution of the Neo-Tethys Ocean shows different characteristics from west to east:Multi-oceanic basins expansion,bidirectional subduction and microblocks collision dominate in the Mediterranean region;northward oceanic subduction and diachronous continental collision along the Zagros suture occur in the Middle East;the Tibet and Southeast Asia are characterized by multi-block riftings from Gondwana and multi-stage collisions with the Eurasia continent.The negative buoyancy of subducting oceanic slabs can be considered as the main engine for northward drifting of Gondwana-derived blocks and subduction of the Neo-Tethys Ocean.Meanwhile,mantle convection and counterclockwise rotation of Gondwana-derived blocks and the Gondwana continent around an Euler pole in West Africa in non-free boundary conditions also controlled the evolution of the Neo-Tethys Ocean.
文摘The new plants documented here, including a representative of the trimerophytesPsilophyton primitiuum sp. nov., a questionable rhyniophyte or trimerophyteHedeia sinica sp. nov., a prelycopodBragwanathia sp. and two species of zosterophyllophytes,Zosterophyllum australianum Lang and Cookson 1930 and2. sp. 1, from the Posongchong Formation of southeastern Yunnan, China, add to the known floral diversity of the Early Devonian of this region. Two sections of the Posongchong Formation, Changputang section of Wenshan district and Gegu section of Mengzi district also are introduced. After comparing the plants with those of the coeval flora of Australia and considering the data of recent paleocontinental reconstructions, the authors suggest that there is a northeastern Gondwana phytogeographic unit during the early Devonian comprising Australia, South China Block and perhaps Shan-Thai Block. The similarity of the floral component between Australia and South China is discussed. Because both Australia and South China also have dominant or endemic taxa, each might be recognized as a subunit, separately characterized byHedeia for Australia andEophyllophyton for South China.