This paper examines the performance of an atmospheric general circulation model (AGCM) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of ...This paper examines the performance of an atmospheric general circulation model (AGCM) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP). It is a spectral model truncated at R42(2.8125°long×1.66°lat) resolution and with nine vertical levels, and referred to as R42L9/LASG hereafter. It is also the new version of atmospheric component model R15L9 of the global ocean-atmosphere-land system (GOALS/LASG). A 40-year simulation in which the model is forced with the climatological monthly mean sea surface temperature is compared with the 40-year (1958-97) U.S. National Center for Environmental Prediction (NGEP) global reanalysis and the 22-year (1979-2000) Xie-Arkin monthly precipitation climatology. The mean DJF and JJA geographical distributions of precipitation, sea level pressure, 500-hPa geopotential height, 850-hPa and 200-hPa zonal wind, and other fields averaged for the last 30-year integration of the R42L9 model are analyzed. Results show that the model reproduces well the observed basic patterns, particularly precipitation over the East Asian region. Comparing the new model with R15L9/LASG, the old version with coarse resolution (nearly 7.5°long×4.5°lat), shows an obvious improvement in the simulation of regional climate, especially precipitation. The weaknesses in simulation and future improvements of the model are also discussed.展开更多
The digital transformation of our society coupled with the increasing exploitation of natural resources makes sustainability challenges more complex and dynamic than ever before.These changes will unlikely stop or eve...The digital transformation of our society coupled with the increasing exploitation of natural resources makes sustainability challenges more complex and dynamic than ever before.These changes will unlikely stop or even decelerate in the near future.There is an urgent need for a new scientific approach and an advanced form of evidence-based decisionmaking towards the benefit of society,the economy,and the environment.To understand the impacts and interrelationships between humans as a society and natural Earth system processes,we propose a new engineering discipline,Big Earth Data science.This science is called to provide the methodologies and tools to generate knowledge from diverse,numerous,and complex data sources necessary to ensure a sustainable human society essential for the preservation of planet Earth.Big Earth Data science aims at utilizing data from Earth observation and social sensing and develop theories for understanding the mechanisms of how such a social-physical system operates and evolves.The manuscript introduces the universe of discourse characterizing this new science,its foundational paradigms and methodologies,and a possible technological framework to be implemented by applying an ecosystem approach.CASEarth and GEOSS are presented as examples of international implementation attempts.Conclusions discuss important challenges and collaboration opportunities.展开更多
文摘This paper examines the performance of an atmospheric general circulation model (AGCM) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP). It is a spectral model truncated at R42(2.8125°long×1.66°lat) resolution and with nine vertical levels, and referred to as R42L9/LASG hereafter. It is also the new version of atmospheric component model R15L9 of the global ocean-atmosphere-land system (GOALS/LASG). A 40-year simulation in which the model is forced with the climatological monthly mean sea surface temperature is compared with the 40-year (1958-97) U.S. National Center for Environmental Prediction (NGEP) global reanalysis and the 22-year (1979-2000) Xie-Arkin monthly precipitation climatology. The mean DJF and JJA geographical distributions of precipitation, sea level pressure, 500-hPa geopotential height, 850-hPa and 200-hPa zonal wind, and other fields averaged for the last 30-year integration of the R42L9 model are analyzed. Results show that the model reproduces well the observed basic patterns, particularly precipitation over the East Asian region. Comparing the new model with R15L9/LASG, the old version with coarse resolution (nearly 7.5°long×4.5°lat), shows an obvious improvement in the simulation of regional climate, especially precipitation. The weaknesses in simulation and future improvements of the model are also discussed.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(grant numbers XDA19030000 and XDA19090000)the DG Research and Innovation of the European Commission(H2020 grant number 34538).
文摘The digital transformation of our society coupled with the increasing exploitation of natural resources makes sustainability challenges more complex and dynamic than ever before.These changes will unlikely stop or even decelerate in the near future.There is an urgent need for a new scientific approach and an advanced form of evidence-based decisionmaking towards the benefit of society,the economy,and the environment.To understand the impacts and interrelationships between humans as a society and natural Earth system processes,we propose a new engineering discipline,Big Earth Data science.This science is called to provide the methodologies and tools to generate knowledge from diverse,numerous,and complex data sources necessary to ensure a sustainable human society essential for the preservation of planet Earth.Big Earth Data science aims at utilizing data from Earth observation and social sensing and develop theories for understanding the mechanisms of how such a social-physical system operates and evolves.The manuscript introduces the universe of discourse characterizing this new science,its foundational paradigms and methodologies,and a possible technological framework to be implemented by applying an ecosystem approach.CASEarth and GEOSS are presented as examples of international implementation attempts.Conclusions discuss important challenges and collaboration opportunities.