期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv3-LITE轻量级神经网络的柑橘识别方法 被引量:64
1
作者 吕石磊 卢思华 +3 位作者 李震 洪添胜 薛月菊 吴奔雷 《农业工程学报》 EI CAS CSCD 北大核心 2019年第17期205-214,共10页
柑橘识别是实现柑橘园果实自动采摘、果树精细化管理以及实现果园产量预测的关键技术环节。为实现自然环境下柑橘果实的快速精准识别,该文提出一种基于改进YOLOv3-LITE轻量级神经网络的柑橘识别方法。在采摘机器人领域,果实识别回归框... 柑橘识别是实现柑橘园果实自动采摘、果树精细化管理以及实现果园产量预测的关键技术环节。为实现自然环境下柑橘果实的快速精准识别,该文提出一种基于改进YOLOv3-LITE轻量级神经网络的柑橘识别方法。在采摘机器人领域,果实识别回归框的准确率直接决定了机器手的采摘成功率,该方法通过引入GIoU边框回归损失函数来提高果实识别回归框准确率;为便于迁移到移动终端,提出一种YOLOv3-LITE轻量级网络模型,使用MobileNet-v2作为模型的骨干网络;使用混合训练与迁移学习结合的预训练方式来提高模型的泛化能力。通过与Faster-RCNN以及SSD模型对比在不同遮挡程度的测试样本下模型的识别效果,用F1值与AP值评估各模型的差异,试验结果表明:该文提出的模型识别效果提升显著,对于果实轻度遮挡的数据集,该文提出的柑橘识别模型的F1值和AP值分别为95.27%和92.75%,AverageIoU为88.65%;在全部测试集上,F1值和AP值分别为93.69%和91.13%,Average IoU为87.32%,在GPU上对柑橘目标检测速度可达246帧/s,对单张416×416的图片推断速度为16.9 ms,在CPU上检测速度可达22帧/s,推断速度为80.9 ms,模型占用内存为28 MB。因此,该文提出的柑橘识别方法具有模型占用内存低、识别准确率高及识别速度快等优点,可为柑橘采摘机器人以及柑橘产业产量预测提出新的解决方案,为柑橘产业智能化提供新的思路。 展开更多
关键词 神经网络 果树 算法 柑橘 YOLOv3-LITE 混合训练 迁移学习 giou边框回归损失函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部