The renewable energy sources(RESs)dominated power grid is an envisaged infrastructure of the future power system,where the commonly used grid following(GFL)control for grid-tied converters suffers from lacking grid su...The renewable energy sources(RESs)dominated power grid is an envisaged infrastructure of the future power system,where the commonly used grid following(GFL)control for grid-tied converters suffers from lacking grid support capability,low stability,etc.Recently,emerging grid forming(GFM)control methods have been proposed to improve the dynamic performance and stability of grid-tied converters.This paper reviews existing GFM control methods for the grid-tied converters and compares them in terms of control structure,grid support capability,fault current limiting,and stability.Considering the impact of fault current limiting strategies,a comprehensive transient stability analysis is provided.In addition,this paper explores the typical applications of GFM converters,such as AC microgrid and offshore wind farm high-voltage direct current(OWF-HVDC)integration systems.Finally,the challenges to the GFM converters in future applications are discussed.展开更多
针对不同类型电网互联时互联电力变换器IPC(interconnecting power converter)控制模式复杂、控制难度大等问题,提出一种用于互联多个高压直流和高压交流子电网的IPC新型电网形成GFM(grid-forming)控制方法。该方法利用模块化多电平变换...针对不同类型电网互联时互联电力变换器IPC(interconnecting power converter)控制模式复杂、控制难度大等问题,提出一种用于互联多个高压直流和高压交流子电网的IPC新型电网形成GFM(grid-forming)控制方法。该方法利用模块化多电平变换器MMC(modular multilevel converter)同时控制其AC和DC端电压,并提出2个双端口GFM MMC控制策略。针对单端口GFM控制和所提双端口GFM控制进行仿真对比,结果表明,与单端口GFM控制相比,双端口GFM控制方法对突发事件(如线路和发电机停运等)的处理更具弹性,且不需为电网中的IPC端口选择GFM或电网跟随GFL(grid-following)的控制方式。展开更多
基金supported by the Xinjiang Autonomous Region Key R&D Projects(No.2020B02002)。
文摘The renewable energy sources(RESs)dominated power grid is an envisaged infrastructure of the future power system,where the commonly used grid following(GFL)control for grid-tied converters suffers from lacking grid support capability,low stability,etc.Recently,emerging grid forming(GFM)control methods have been proposed to improve the dynamic performance and stability of grid-tied converters.This paper reviews existing GFM control methods for the grid-tied converters and compares them in terms of control structure,grid support capability,fault current limiting,and stability.Considering the impact of fault current limiting strategies,a comprehensive transient stability analysis is provided.In addition,this paper explores the typical applications of GFM converters,such as AC microgrid and offshore wind farm high-voltage direct current(OWF-HVDC)integration systems.Finally,the challenges to the GFM converters in future applications are discussed.