Geostationary satellites(GEOs) play a significant role in the regional satellite navigation system.Simulation experiments show that the clock corrections could be mitigated through a single strategy or double differen...Geostationary satellites(GEOs) play a significant role in the regional satellite navigation system.Simulation experiments show that the clock corrections could be mitigated through a single strategy or double differencing strategies for a navigation constellation,but for the mode of individual GEO orbit determination,high precision orbit and clock correction could not be obtained in the orbit determination based on the pseudorange data.A new GEO combined precise orbit determination(POD) strategy is studied in this paper,which combines pseudorange data and C-band transfer ranging data.This strategy overcomes the deficiency of C-band transfer ranging caused by limited stations and tracking time available.With the combination of transfer ranging and pseudorange data,clock corrections between the GEO and the stations can be estimated simultaneously along with orbital parameters,maintaining self-consistency between the satellite ephemeris and clock correction parameters.The error covariance analysis is conducted to illuminate the contributions from the transfer ranging data and the psudoranging data.Using data collected for a Chinese GEO satellite with 3 C-band transfer ranging stations and 4 L-band pseudorange tracking stations,POD experiments indicate that a meter-level accuracy is achievable.The root-mean-square(RMS) of the post-fit C-band ranging data is about 0.203 m,and the RMS of the post-fit pseudorange is 0.408 m.Radial component errors of the POD experiments are independently evaluated with the satellite laser ranging(SLR) data from a station in Beijing,with the residual RMS of 0.076 m.The SLR evaluation also suggests that for 2-h orbital predication,the predicted radial error is about 0.404 m,and the clock correction error is about 1.38 ns.Even for the combination of one C-band transfer ranging station and 4 pseudorange stations,POD is able to achieve a reasonable accuracy with the radial error of 0.280 m and the 2-h predicted radial error of 0.888 m.Clock synchronization between the GEO and tracking statio展开更多
介绍了基于Windows系统开发的GEO卫星定轨可视化软件,该软件是采用Microsoft Visual Studio 2005软件平台,利用Visual Basic.NET编程技术开发设计的,具有预处理观测数据资料、解算GEO卫星精密轨道、分析和图形化轨道解算结果等功能。该...介绍了基于Windows系统开发的GEO卫星定轨可视化软件,该软件是采用Microsoft Visual Studio 2005软件平台,利用Visual Basic.NET编程技术开发设计的,具有预处理观测数据资料、解算GEO卫星精密轨道、分析和图形化轨道解算结果等功能。该软件界面友好、可操作性强、方便省时,有效地提高了GEO卫星定轨工作效率。展开更多
基金supported by the National High-Tech Research and Development Program of China (Grant No 2007AA12Z345)Space Navigation and Positioning Technique, Laboratory of Shanghai Municipality (Grant No 06ZD22101)Wuhan University Satellite Navigation and Positioning, Laboratory of the Ministry of Education (Grant No GRC-2009004)
文摘Geostationary satellites(GEOs) play a significant role in the regional satellite navigation system.Simulation experiments show that the clock corrections could be mitigated through a single strategy or double differencing strategies for a navigation constellation,but for the mode of individual GEO orbit determination,high precision orbit and clock correction could not be obtained in the orbit determination based on the pseudorange data.A new GEO combined precise orbit determination(POD) strategy is studied in this paper,which combines pseudorange data and C-band transfer ranging data.This strategy overcomes the deficiency of C-band transfer ranging caused by limited stations and tracking time available.With the combination of transfer ranging and pseudorange data,clock corrections between the GEO and the stations can be estimated simultaneously along with orbital parameters,maintaining self-consistency between the satellite ephemeris and clock correction parameters.The error covariance analysis is conducted to illuminate the contributions from the transfer ranging data and the psudoranging data.Using data collected for a Chinese GEO satellite with 3 C-band transfer ranging stations and 4 L-band pseudorange tracking stations,POD experiments indicate that a meter-level accuracy is achievable.The root-mean-square(RMS) of the post-fit C-band ranging data is about 0.203 m,and the RMS of the post-fit pseudorange is 0.408 m.Radial component errors of the POD experiments are independently evaluated with the satellite laser ranging(SLR) data from a station in Beijing,with the residual RMS of 0.076 m.The SLR evaluation also suggests that for 2-h orbital predication,the predicted radial error is about 0.404 m,and the clock correction error is about 1.38 ns.Even for the combination of one C-band transfer ranging station and 4 pseudorange stations,POD is able to achieve a reasonable accuracy with the radial error of 0.280 m and the 2-h predicted radial error of 0.888 m.Clock synchronization between the GEO and tracking statio
文摘介绍了基于Windows系统开发的GEO卫星定轨可视化软件,该软件是采用Microsoft Visual Studio 2005软件平台,利用Visual Basic.NET编程技术开发设计的,具有预处理观测数据资料、解算GEO卫星精密轨道、分析和图形化轨道解算结果等功能。该软件界面友好、可操作性强、方便省时,有效地提高了GEO卫星定轨工作效率。