马尔可夫随机场(MRF)在SAR图像分割中有着广泛的应用。由于合成孔径雷达(SAR)图像本身所固有的相干斑噪声的影响,传统方法很难获得准确的分割,因此提出了一种新的基于MRF(Markov Random Field)融合Gaussian-Hermite矩(GHM)的SAR图像无...马尔可夫随机场(MRF)在SAR图像分割中有着广泛的应用。由于合成孔径雷达(SAR)图像本身所固有的相干斑噪声的影响,传统方法很难获得准确的分割,因此提出了一种新的基于MRF(Markov Random Field)融合Gaussian-Hermite矩(GHM)的SAR图像无监督分割算法。利用Gaussian-Hermite矩的不同阶矩作为SAR图像特征得到初始分割;将得到的初始分割结果作为MRF随机场的先验模型,通过引入一个基于两成分权重参数的能量函数,利用最大后验概率(MAP)得到最终的分割结果。通过对合成图像及SAR图像分割实验结果的比较,表明了该方法在误分率、抗噪性以及视觉效果上具有更好的效果。展开更多
文摘马尔可夫随机场(MRF)在SAR图像分割中有着广泛的应用。由于合成孔径雷达(SAR)图像本身所固有的相干斑噪声的影响,传统方法很难获得准确的分割,因此提出了一种新的基于MRF(Markov Random Field)融合Gaussian-Hermite矩(GHM)的SAR图像无监督分割算法。利用Gaussian-Hermite矩的不同阶矩作为SAR图像特征得到初始分割;将得到的初始分割结果作为MRF随机场的先验模型,通过引入一个基于两成分权重参数的能量函数,利用最大后验概率(MAP)得到最终的分割结果。通过对合成图像及SAR图像分割实验结果的比较,表明了该方法在误分率、抗噪性以及视觉效果上具有更好的效果。
文摘提出一种基于Gaussian-Hermite矩的虹膜识别算法.首先由粗到精定位出虹膜,并归一化为多个一维信号,然后利用1阶和2阶Gaussian-Hermite矩提取一维信号的局部特征并进行0-1编码,最后用汉明距离分类.该算法只需单个训练样本,识别速度快,容易实现,并具有平移、旋转和缩放不变性.基于CASIA虹膜数据库的实验表明,算法的识别正确率达98.55%,单次平均识别时间为0.5 s.