GAPDH is a conserved enzyme that binds diverse proteins, such as Siah during apoptotic nuclear translocation. There is one somatic GAPDH gene, but over 60 pseudogenes, the expression of which is nebulous. A single nuc...GAPDH is a conserved enzyme that binds diverse proteins, such as Siah during apoptotic nuclear translocation. There is one somatic GAPDH gene, but over 60 pseudogenes, the expression of which is nebulous. A single nucleotide polymorphism (SNP) in the GAPDHP44 pseudogene exhibits a beneficial allele in AD. The objective of this study was to examine the P44 gene and to propose a mechanism for the putative protein and its impact on AD. We examined the sequences in the putative coding region of the human GAPDHP44 gene and the upstream genetic elements usinga bioinformatics approach. We compared the amino acid sequences of the putative gene product with that of the parent GAPDH protein. There is a TATA box 24 nt upstream from, and a Kozak sequence at, putative transcription and translation start sites, respecttively. The upstream region also has sequences (7 - 16 nt) paralogous to those in parent gene introns;one shows homology to a known enhancer element. The resulting protein would contain 139 aa due to a stop codon, roughly the same size as the dinucleotide domain (151 aa) of the parent protein. The SNP is in a region (residues 80 - 120) that binds to the protein GOSPEL. We propose that the beneficial SNP may cause a glutamine to glutamate substitution. NMDA-stmulated neurons undergo GAPDH nitrosylation, Siah translocation, but can be rescued by GOSPEL binding to GAPDH. Our model suggests that the putative P44 protein may regulate GAPDH-GO-SPEL interaction and the beneficial SNPmay ameliorate AD.展开更多
文摘GAPDH is a conserved enzyme that binds diverse proteins, such as Siah during apoptotic nuclear translocation. There is one somatic GAPDH gene, but over 60 pseudogenes, the expression of which is nebulous. A single nucleotide polymorphism (SNP) in the GAPDHP44 pseudogene exhibits a beneficial allele in AD. The objective of this study was to examine the P44 gene and to propose a mechanism for the putative protein and its impact on AD. We examined the sequences in the putative coding region of the human GAPDHP44 gene and the upstream genetic elements usinga bioinformatics approach. We compared the amino acid sequences of the putative gene product with that of the parent GAPDH protein. There is a TATA box 24 nt upstream from, and a Kozak sequence at, putative transcription and translation start sites, respecttively. The upstream region also has sequences (7 - 16 nt) paralogous to those in parent gene introns;one shows homology to a known enhancer element. The resulting protein would contain 139 aa due to a stop codon, roughly the same size as the dinucleotide domain (151 aa) of the parent protein. The SNP is in a region (residues 80 - 120) that binds to the protein GOSPEL. We propose that the beneficial SNP may cause a glutamine to glutamate substitution. NMDA-stmulated neurons undergo GAPDH nitrosylation, Siah translocation, but can be rescued by GOSPEL binding to GAPDH. Our model suggests that the putative P44 protein may regulate GAPDH-GO-SPEL interaction and the beneficial SNPmay ameliorate AD.