A photostrictive type of opto-electromechanical actuator activated by high-energy lights can introduce actuation and control effects without hard-wired connections. This paper addresses the controllability aspect in w...A photostrictive type of opto-electromechanical actuator activated by high-energy lights can introduce actuation and control effects without hard-wired connections. This paper addresses the controllability aspect in wireless vibration control of plate structures via photostrictive actuators. A modal force index, which has taken into account the mode number, the spatial distribution, and the dimension of the actuator, is chosen as an objective function to determine the optimal locations of photostrictive actuators. A linear methodology is proposed in this paper and the vibration equation is written in the standard state-space form. A binary-coded GA based combined optimal placement and LQR (linear quadratic regulator) control scheme has been incorporated, which maximizes the modal force index, the closed loop damping and minimizes input light intensity to the actuators. In the present method only three weighting factors have been used to search optimal Q and R matrices using GA, which reduces chromosome length and hence minimizes computational time. Numerical results demonstrate that the use of strategically positioned actuator patches can effectively control the fundamental modes that dominate the structural vibration.展开更多
基金National Natural Science Foundation Under Grant No.10872090 & 50830201NUAA Research Funding Under Grant No.NJ2010011
文摘A photostrictive type of opto-electromechanical actuator activated by high-energy lights can introduce actuation and control effects without hard-wired connections. This paper addresses the controllability aspect in wireless vibration control of plate structures via photostrictive actuators. A modal force index, which has taken into account the mode number, the spatial distribution, and the dimension of the actuator, is chosen as an objective function to determine the optimal locations of photostrictive actuators. A linear methodology is proposed in this paper and the vibration equation is written in the standard state-space form. A binary-coded GA based combined optimal placement and LQR (linear quadratic regulator) control scheme has been incorporated, which maximizes the modal force index, the closed loop damping and minimizes input light intensity to the actuators. In the present method only three weighting factors have been used to search optimal Q and R matrices using GA, which reduces chromosome length and hence minimizes computational time. Numerical results demonstrate that the use of strategically positioned actuator patches can effectively control the fundamental modes that dominate the structural vibration.