随着可再生能源大量接入,增加了能源互联网的波动性与多样性,对冷热电负荷预测的精确度和稳定性提出了更高的要求,冷热电负荷的精准预测是能源互联网运行优化的重要前提,并对需求侧分析具有重要意义。利用天气信息,提出了一种基于气象...随着可再生能源大量接入,增加了能源互联网的波动性与多样性,对冷热电负荷预测的精确度和稳定性提出了更高的要求,冷热电负荷的精准预测是能源互联网运行优化的重要前提,并对需求侧分析具有重要意义。利用天气信息,提出了一种基于气象信息的短期冷热电负荷联合预测方法。该方法包括区域天气预测与冷热电负荷联合预测两大步骤。在区域天气预测中,首先充分利用历史天气、实测天气与天气预报信息,采用调整误差法,对一指定区域进行天气预测;之后利用历史负荷数据、历史天气数据与区域天气预测数据,采取遗传算法优化BP神经网络(genetic algorithm to optimize BPneuralnetwork,GA-BP)预测算法,对冷热电负荷进行联合预测。仿真结果表明该方法能够有效提高负荷预测精度。展开更多
文摘随着可再生能源大量接入,增加了能源互联网的波动性与多样性,对冷热电负荷预测的精确度和稳定性提出了更高的要求,冷热电负荷的精准预测是能源互联网运行优化的重要前提,并对需求侧分析具有重要意义。利用天气信息,提出了一种基于气象信息的短期冷热电负荷联合预测方法。该方法包括区域天气预测与冷热电负荷联合预测两大步骤。在区域天气预测中,首先充分利用历史天气、实测天气与天气预报信息,采用调整误差法,对一指定区域进行天气预测;之后利用历史负荷数据、历史天气数据与区域天气预测数据,采取遗传算法优化BP神经网络(genetic algorithm to optimize BPneuralnetwork,GA-BP)预测算法,对冷热电负荷进行联合预测。仿真结果表明该方法能够有效提高负荷预测精度。