期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
G-旋模型场代数中的对偶定理 被引量:1
1
作者 蒋立宁 《数学学报(中文版)》 SCIE CSCD 北大核心 2002年第1期37-42,共6页
设G是有限群, H是G的子群,D(G)为G的Double代数, F是 G-旋模型所对应的场代数. 本文考虑D(G)的Hopf子代数D(H),证明了F的D(H)不变子空间AH是C*-代数.D(H)存在C*-表示,使得D... 设G是有限群, H是G的子群,D(G)为G的Double代数, F是 G-旋模型所对应的场代数. 本文考虑D(G)的Hopf子代数D(H),证明了F的D(H)不变子空间AH是C*-代数.D(H)存在C*-表示,使得D(H)和AH互为换位子. 展开更多
关键词 g-旋模型 换位子 条件期望 场代数 对偶定理 C^*-代数
原文传递
Monotonic Property in Field Algebra of G-Spin Model
2
作者 蒋立宁 《Journal of Beijing Institute of Technology》 EI CAS 2003年第1期101-104,共4页
Let F be the field algebra of G -spin model, D(G) the double algebra of a finite group G and D(H) the sub-Hopf algerba of D(G) determined by the subgroup H of G . The paper builds a correspondence between D(H) and th... Let F be the field algebra of G -spin model, D(G) the double algebra of a finite group G and D(H) the sub-Hopf algerba of D(G) determined by the subgroup H of G . The paper builds a correspondence between D(H) and the D(H) -invariant sub- C * -algebra A H in F, and proves that the correspondence is strictly monotonic. 展开更多
关键词 field algebra g -spin model monotonic property
下载PDF
The Galois Correspondence in Field Algebra of G-spin Model
3
作者 Li Ning JIANG Mao Zheng GUO 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第4期673-680,共8页
Suppose that G is a finite group and D(G) the double algebra of G. For a given subgroup H of G, there is a sub-Hopf algebra D(G; H) of D(G). This paper gives the concrete construction of a D(G; H)-invariant su... Suppose that G is a finite group and D(G) the double algebra of G. For a given subgroup H of G, there is a sub-Hopf algebra D(G; H) of D(G). This paper gives the concrete construction of a D(G; H)-invariant subspace AH in field algebra of G-spin model and proves that if H is a normal subgroup of G, then AH is Galois closed. 展开更多
关键词 g-spin model Double algebra Observable algebra galois closed
原文传递
C*-index of observable algebras in G-spin model
4
作者 JIANG Lining 《Science China Mathematics》 SCIE 2005年第1期57-66,共10页
In two-dimensional lattice spin systems in which the spins take values in a finite group G,one can define a field algebra F which carries an action of a Hopf algebra D(G),the double algebra of G and moreover,an action... In two-dimensional lattice spin systems in which the spins take values in a finite group G,one can define a field algebra F which carries an action of a Hopf algebra D(G),the double algebra of G and moreover,an action of D(G; H),which is a subalgebra of D(G) determined by a subgroup H of G,so that F becomes a modular algebra.The concrete construction of D(G; H)-invariant subspace AH in F is given.By constructing the quasi-basis of conditional expectation γG of AH onto AG,the C*-index of γG is exactly the index of H in G. 展开更多
关键词 g-spin model observable algebra quasi-basis C*-index.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部