Starting from the classical appointment problems,this paper studies the appointment decision under fuzzy conditions,using the theory of fuzzy sets and the quantified approach for’soft’index,and tries to solve the pr...Starting from the classical appointment problems,this paper studies the appointment decision under fuzzy conditions,using the theory of fuzzy sets and the quantified approach for’soft’index,and tries to solve the problem of bow to synthetically handle the fuzzy massages and then get to the best appointment decision by the way of classical approach.In this paper,the question of fuzzy appointment decision.I also design the related computer management system in Turbo C language.This system can be used in rapid general decision and solve the problem of decision wit single or several elements under the fuzzy condition.展开更多
In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has signifi...In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has significant precision advantages and does not require any adjustment/learning. We put together neuro-fuzzy system (NFS) to connect the set of exemplar input feature vectors (FV) with associated output label (target), both represented by their membership functions (MF). Next unknown FV would be classified by getting upper value of current output MF. After that the fuzzy truths for all MF upper values are maximized and the label of the winner is considered as the class of the input FV. We use the knowledge in the exemplar-label pairs directly with no training. It sets up automatically and then classifies all input FV from the same population as the exemplar FVs. We show that our approach statistically is almost twice as accurate, as well-known genetic-based learning mechanism FRM.展开更多
The article presents an approach toward the implementation of an Autonomous Intelligent Actor’s (AIA) [1] fuzzy control mechanism, when each step of it is based on dynamically defined scale. Such a scale is directed ...The article presents an approach toward the implementation of an Autonomous Intelligent Actor’s (AIA) [1] fuzzy control mechanism, when each step of it is based on dynamically defined scale. Such a scale is directed by fuzzy conditional inference rule. The approach, offered in the article, allows “soft landing” of AIA on a Target even in a case of “unfriendly” docking situation.展开更多
In this article, we present a systemic approach toward a fuzzy logic based formalization of an approximate reasoning methodology in a fuzzy resolution, where we derive a truth value of A from both values of B → A and...In this article, we present a systemic approach toward a fuzzy logic based formalization of an approximate reasoning methodology in a fuzzy resolution, where we derive a truth value of A from both values of B → A and B by some mechanism. For this purpose, we utilize a t-norm fuzzy logic, in which an implication operator is a root of both graduated conjunction and disjunction operators. Furthermore by using an inverse approximate reasoning, we conclude the truth value of A from both values of B → A and B, applying an altogether different mechanism. A current research is utilizing an approximate reasoning methodology, which is based on a similarity relation for a fuzzification, while similarity measure is utilized in fuzzy inference mechanism. This approach is applied to both generalized modus-ponens/modus-tollens syllogisms and is well-illustrated with artificial examples.展开更多
文摘Starting from the classical appointment problems,this paper studies the appointment decision under fuzzy conditions,using the theory of fuzzy sets and the quantified approach for’soft’index,and tries to solve the problem of bow to synthetically handle the fuzzy massages and then get to the best appointment decision by the way of classical approach.In this paper,the question of fuzzy appointment decision.I also design the related computer management system in Turbo C language.This system can be used in rapid general decision and solve the problem of decision wit single or several elements under the fuzzy condition.
文摘In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has significant precision advantages and does not require any adjustment/learning. We put together neuro-fuzzy system (NFS) to connect the set of exemplar input feature vectors (FV) with associated output label (target), both represented by their membership functions (MF). Next unknown FV would be classified by getting upper value of current output MF. After that the fuzzy truths for all MF upper values are maximized and the label of the winner is considered as the class of the input FV. We use the knowledge in the exemplar-label pairs directly with no training. It sets up automatically and then classifies all input FV from the same population as the exemplar FVs. We show that our approach statistically is almost twice as accurate, as well-known genetic-based learning mechanism FRM.
文摘The article presents an approach toward the implementation of an Autonomous Intelligent Actor’s (AIA) [1] fuzzy control mechanism, when each step of it is based on dynamically defined scale. Such a scale is directed by fuzzy conditional inference rule. The approach, offered in the article, allows “soft landing” of AIA on a Target even in a case of “unfriendly” docking situation.
文摘In this article, we present a systemic approach toward a fuzzy logic based formalization of an approximate reasoning methodology in a fuzzy resolution, where we derive a truth value of A from both values of B → A and B by some mechanism. For this purpose, we utilize a t-norm fuzzy logic, in which an implication operator is a root of both graduated conjunction and disjunction operators. Furthermore by using an inverse approximate reasoning, we conclude the truth value of A from both values of B → A and B, applying an altogether different mechanism. A current research is utilizing an approximate reasoning methodology, which is based on a similarity relation for a fuzzification, while similarity measure is utilized in fuzzy inference mechanism. This approach is applied to both generalized modus-ponens/modus-tollens syllogisms and is well-illustrated with artificial examples.