The physical and mathematical model of temperature field for blast furnace stave coolers was established. The computation results show that the heat resistance of 2-6 mm water scale within the cooling pipe is about 7...The physical and mathematical model of temperature field for blast furnace stave coolers was established. The computation results show that the heat resistance of 2-6 mm water scale within the cooling pipe is about 7%-20% of the total heat resistance of cooling stave body, as for drilling duct type, the heat resistance of 2-6 mm water scale is about 88%-98% of the total heat resistance. Using drilling duct or full cast pipe can eliminate gas clearance and coating layer between pipes and cast iron body and reduce the heat resistance of the cooler sharply and improve the coefficient of heat transfer to a great extent. The water velocity within coolers can be kept at the 1evel of 0.5- 1 .5 m/s, the higher water velocity can not decrease the hot surface temperature, but can increase energy consumption for cooling water.展开更多
When carbon-bearing pellets of oolitic hematite are treated in a shaft furnace,some problems are typically encountered:the metallization ratio of the metal pellets is low;the carbon-bearing pellets bond with each oth...When carbon-bearing pellets of oolitic hematite are treated in a shaft furnace,some problems are typically encountered:the metallization ratio of the metal pellets is low;the carbon-bearing pellets bond with each other at high temperatures;and the separation of phosphorus from iron is difficult.To solve these problems,experiments were conducted on oolitic hematite reduction in a resistance furnace and semi-industrial test shaft furnace.The results showed that the metallization rate reached 90% or greater under the conditions of a reduction temperature of 1 150℃,an atmosphere of simulated flue gas,and a reduction time between 1.5and 2.0h.The problem of high-temperature bonding among pellets can be solved by increasing the strength of the pellets,coating their surface with a surface transfer agent and maintaining an even temperature inside the shaft furnace.The basicity of the ore blend exerted no obvious effect on the magnetic concentrate and phosphorus content.The phosphorus content in the magnetic concentrate can be further reduced by improving the grinding capacity of the ball mills used in the experiments.On the basis of the experimental results related to oolitic hematite reduction with carbon-bearing pellets in a shaft furnace,the experimental requirements were satisfied with an average 88.27%total Fe content and 0.581% P content in the pellets.展开更多
文摘The physical and mathematical model of temperature field for blast furnace stave coolers was established. The computation results show that the heat resistance of 2-6 mm water scale within the cooling pipe is about 7%-20% of the total heat resistance of cooling stave body, as for drilling duct type, the heat resistance of 2-6 mm water scale is about 88%-98% of the total heat resistance. Using drilling duct or full cast pipe can eliminate gas clearance and coating layer between pipes and cast iron body and reduce the heat resistance of the cooler sharply and improve the coefficient of heat transfer to a great extent. The water velocity within coolers can be kept at the 1evel of 0.5- 1 .5 m/s, the higher water velocity can not decrease the hot surface temperature, but can increase energy consumption for cooling water.
基金Item Sponsored by National Science and Technology Support Program for 12th Five-year Plan of China(2013BAE07B03)
文摘When carbon-bearing pellets of oolitic hematite are treated in a shaft furnace,some problems are typically encountered:the metallization ratio of the metal pellets is low;the carbon-bearing pellets bond with each other at high temperatures;and the separation of phosphorus from iron is difficult.To solve these problems,experiments were conducted on oolitic hematite reduction in a resistance furnace and semi-industrial test shaft furnace.The results showed that the metallization rate reached 90% or greater under the conditions of a reduction temperature of 1 150℃,an atmosphere of simulated flue gas,and a reduction time between 1.5and 2.0h.The problem of high-temperature bonding among pellets can be solved by increasing the strength of the pellets,coating their surface with a surface transfer agent and maintaining an even temperature inside the shaft furnace.The basicity of the ore blend exerted no obvious effect on the magnetic concentrate and phosphorus content.The phosphorus content in the magnetic concentrate can be further reduced by improving the grinding capacity of the ball mills used in the experiments.On the basis of the experimental results related to oolitic hematite reduction with carbon-bearing pellets in a shaft furnace,the experimental requirements were satisfied with an average 88.27%total Fe content and 0.581% P content in the pellets.