The use of green manures contributes to sustainable soil and nutrient management in agriculture;however, the responses of soil microbial communities to different fertilization regimes at the regional scale are uncerta...The use of green manures contributes to sustainable soil and nutrient management in agriculture;however, the responses of soil microbial communities to different fertilization regimes at the regional scale are uncertain. A study was undertaken across multiple sites and years in Hunan, Jiangxi, Anhui, Henan,Hubei, and Fujian provinces of South China to investigate the effects of green manuring on the structure and function of soil bacterial communities in rice-green manure cropping systems. The study included four treatments: winter fallow with no chemical fertilizer as a control(NF), milk vetch as green manure without chemical fertilizer(GM), winter fallow and chemical fertilizer(CF), and a combination of chemical fertilizer and milk vetch(GMCF).Significant differences were found in the responses of soil microbial communities at different sites, with sampling sites explaining 72.33%(F = 36.59,P = 0.001) of the community composition variation. The bacterial communities in the soils from Anhui, Henan, and Hubei were broadly similar, while those from Hunan were distinctly different from other locations. The analysis of Weighted UniFrac distances showed that milk vetch changed soil microbial communities compared with winter fallow. Proteobacteria and Chloroflexi predominated in these paddy soils;however, the application of green manures increased the relative abundance of Actinobacteria. There was evidence showing that the functional microbes which play important roles in the cycling of soil carbon, nitrogen(N), and sulfur(S) changed after several years of milk vetch utilization(linear discriminant analysis score > 2). The abundance of methane-oxidizing bacteria and S-reducing bacteria increased, and microbes involved in N fixation, nitrification, and denitrification also increased in some provinces. We concluded that the application of milk vetch changed the bacterial community structure and affected the functional groups related to nutrient transformation in soils at a regional scale.展开更多
Electron-correlated materials have been drawing ever-increasing attention due to their fascinating physical behaviors and extensive application scenarios.In this review,a new method for material research and design(R&...Electron-correlated materials have been drawing ever-increasing attention due to their fascinating physical behaviors and extensive application scenarios.In this review,a new method for material research and design(R&D),named structural-functional unit ordering(SFU ordering),which is presented,overcomes the shortcomings—for example,the limitation of finite chemical elements and long R&D circle-of conventional strategy and thus provides guidance for the design of these high-performance functional materials on demand.Meanwhile,with the development of material characterization technologies,SFUs of different scales and types can be directly observed,which,moreover,regulate the corresponding orderings.The review,starts with an introduction of the profile for SFU ordering and the synergistic effect between SFUs.Then,studies on several new high-performance electronic-correlated materials,for example,a ferromagnetic semiconductor with local spin,ferromagnetic metals with spin topologies,ferroelectric thin films with polar topologies,piezoelectric thin films with nanopillars enclosed by charged boundaries,thermoelectric materials with local ferromagnetic nanoparticles and topotactic phase transformation with conducting nanofilaments are stated in detail one by one.The vital aspect is the breaking of local symmetry,the construction,the structure,of SFUs and their orderings existing or theoretically existing,together with the enhanced/new performance.All in all,the main comments of the review tend to the remaining challenges,promising design approaches for the SFUs,and their orderings for high-performance functional materials.展开更多
基金supported by the earmarked fund for Modern Agro-industry Technology Research System-Green Manure,China (No.CARS-22)the National Natural Science Foundation of China (No.42007071)。
文摘The use of green manures contributes to sustainable soil and nutrient management in agriculture;however, the responses of soil microbial communities to different fertilization regimes at the regional scale are uncertain. A study was undertaken across multiple sites and years in Hunan, Jiangxi, Anhui, Henan,Hubei, and Fujian provinces of South China to investigate the effects of green manuring on the structure and function of soil bacterial communities in rice-green manure cropping systems. The study included four treatments: winter fallow with no chemical fertilizer as a control(NF), milk vetch as green manure without chemical fertilizer(GM), winter fallow and chemical fertilizer(CF), and a combination of chemical fertilizer and milk vetch(GMCF).Significant differences were found in the responses of soil microbial communities at different sites, with sampling sites explaining 72.33%(F = 36.59,P = 0.001) of the community composition variation. The bacterial communities in the soils from Anhui, Henan, and Hubei were broadly similar, while those from Hunan were distinctly different from other locations. The analysis of Weighted UniFrac distances showed that milk vetch changed soil microbial communities compared with winter fallow. Proteobacteria and Chloroflexi predominated in these paddy soils;however, the application of green manures increased the relative abundance of Actinobacteria. There was evidence showing that the functional microbes which play important roles in the cycling of soil carbon, nitrogen(N), and sulfur(S) changed after several years of milk vetch utilization(linear discriminant analysis score > 2). The abundance of methane-oxidizing bacteria and S-reducing bacteria increased, and microbes involved in N fixation, nitrification, and denitrification also increased in some provinces. We concluded that the application of milk vetch changed the bacterial community structure and affected the functional groups related to nutrient transformation in soils at a regional scale.
基金the financial support from the National Key R&D Program of China(2021YFB3201100)the National Natural Science Foundation of China(52172128)the Top Young Talents Programme of Xi'an Jiaotong University.
文摘Electron-correlated materials have been drawing ever-increasing attention due to their fascinating physical behaviors and extensive application scenarios.In this review,a new method for material research and design(R&D),named structural-functional unit ordering(SFU ordering),which is presented,overcomes the shortcomings—for example,the limitation of finite chemical elements and long R&D circle-of conventional strategy and thus provides guidance for the design of these high-performance functional materials on demand.Meanwhile,with the development of material characterization technologies,SFUs of different scales and types can be directly observed,which,moreover,regulate the corresponding orderings.The review,starts with an introduction of the profile for SFU ordering and the synergistic effect between SFUs.Then,studies on several new high-performance electronic-correlated materials,for example,a ferromagnetic semiconductor with local spin,ferromagnetic metals with spin topologies,ferroelectric thin films with polar topologies,piezoelectric thin films with nanopillars enclosed by charged boundaries,thermoelectric materials with local ferromagnetic nanoparticles and topotactic phase transformation with conducting nanofilaments are stated in detail one by one.The vital aspect is the breaking of local symmetry,the construction,the structure,of SFUs and their orderings existing or theoretically existing,together with the enhanced/new performance.All in all,the main comments of the review tend to the remaining challenges,promising design approaches for the SFUs,and their orderings for high-performance functional materials.