In the past two years,significant progresses have been achieved in high-performance cast and wrought magnesium and magnesium alloys,magnesium-based composites,advanced cast technologies,advanced processing technologie...In the past two years,significant progresses have been achieved in high-performance cast and wrought magnesium and magnesium alloys,magnesium-based composites,advanced cast technologies,advanced processing technologies,and functional magnesium materials,such as Mg ion batteries,hydrogen storage Mg materials,bio-magnesium alloys,etc.Great contributions to the development of new magnesium alloys and their processing technologies have been made by Chongqing University,Shanghai Jiaotong University,Chinese Academy of Sciences,Helmholtz Zentrum Geesthacht,Queensland University,Brunel University,etc.This review paper is aimed to summarize the latest important advances in cast magnesium alloys,wrought magnesium alloys and functional magnesium materials worldwide in 2018–2019,including both the development of new materials and the innovation of their processing technologies.Based on the issues and challenges identified here,some future research directions are suggested,including further development of high-performance magnesium alloys having high strength and superior plasticity together with high corrosion resistance and low cost,and fundamental research on the phase diagram,diffusion,precipitation,etc.,as well as the development of advanced welding and joining technology.展开更多
This review summarizes main research findings in soil fauna eco-geography in China in the past 30 years. The subject areas and main results were overviewed including biodiversity and eco-geological distribution of soi...This review summarizes main research findings in soil fauna eco-geography in China in the past 30 years. The subject areas and main results were overviewed including biodiversity and eco-geological distribution of soil fauna communities. Studies of ecological distributions of soil fauna and dynamic ranges in space from tropical, subtropical to temperate regions, and in categories from forest, grassland, desert, wetland, farmland to urban ecosystems, the responses and indications of soil fauna to soil environments. Effects of intensive disturbance such as fire, grazing, farming, fertilization on soil fauna include sensitive (e.g. nematode) and rare groups and community indexes. The functions of soil fauna were discussed including environmental construction, environmental purification, litter decomposition and elements cycling. Interactions between soil fauna and other biota in soil ecosystems and linking between aboveground and belowground diversity and the effects of global change on soil fauna community in China were also included. Finally, the authors pointed out common interests in soil fauna eco-geographical studies, which include application of molecule biology into soil fauna taxa; function and mechanism of soil fauna community diversity; interaction between aboveground and belowground ecosystems; effects of disturbance, pollution, biological invasion, and global change on soil fauna community and function. The review is to provide a scientific basis for promoting soil fauna eco-geographical studies in China.展开更多
Functional enrichment analysis is pivotal for interpreting highthroughput omics data in life science.It is crucial for this type of tool to use the latest annotation databases for as many organisms as possible.To meet...Functional enrichment analysis is pivotal for interpreting highthroughput omics data in life science.It is crucial for this type of tool to use the latest annotation databases for as many organisms as possible.To meet these requirements,we present here an updated version of our popular Bioconductor package,clusterProfiler 4.0.This package has been enhanced considerably compared with its original version published 9 years ago.The new version provides a universal interface for functional enrichment analysis in thousands of organisms based on internally supported ontologies and pathways as well as annotation data provided by users or derived from online databases.It also extends the dplyr and ggplot2 packages to offer tidy interfaces for data operation and visualization.Other new features include gene set enrichment analysis and comparison of enrichment results from multiple gene lists.We anticipate that clusterProfiler 4.0 will be applied to a wide range of scenarios across diverse organisms.展开更多
The main purpose of this study was to examine the effects of plant species diversity and functional composition (the identity of the plant functional groups) on ecosystem stability of Stipa, communities in the Inner M...The main purpose of this study was to examine the effects of plant species diversity and functional composition (the identity of the plant functional groups) on ecosystem stability of Stipa, communities in the Inner Mongolia Plateau. The research work was based on a 12-year study (from 1984 to 1995) of species abundance, diversity, and primary productivity of four Stipa communities, i.e. S. baicalensis Roshev., S. grandis P. Smirn., S, krylovii Roshev., and S. klemenzii Roshev. respectively. The Shnnon-Wiener index was used as a measurement of plant diversity, while functional composition was used to differentiate the functional groups that were included in the communities. The plant species of four Stipa communities were classified into functional groups based on the differences in life forms and ecological groups, which influence their performance in resource requirements, seasonality of growth, tolerance to water stress, and life history. Plant species were classified into five functional groups based on their differences in life form, shrubs and half shrubs, perennial bunch grasses, perennial rhizome grasses, forbs, annuals and biennials. Based on their differences in water requirement these species were classified into four functional groups: xerads, intermediate xerads, intermediate mesophytes, and mesophytes. The results showed: 1) Plant species diversity stabilized ecosystem processes. Shannon-Wiener index were 2.401 4, 2.172 0, 1.624 8, 0.354 3 from S. baicalensis community to S. grandis, S. krylovii and S. klemenzii community, respectively. The dynamics of the aboveground net primary productivity (ANPP) for a 12-year's period showed a reverse pattern, the coefficients of variation of the four communities were 21.94%, 20.63%, 29.21% and 39.72% respectively. 2) The Life form functional group component of diversity was a greater determinant of the ecosystem processes than the species component of diversity. The effects of perennial bunch grasses, perennial rhizome grasses and forbs on community stability w展开更多
Research on magnesium alloys continues to attract great attention,with more than 3000 papers on magnesium and magnesium alloys published and indexed in SCI in 2020 alone.The results of bibliometric analyses show that ...Research on magnesium alloys continues to attract great attention,with more than 3000 papers on magnesium and magnesium alloys published and indexed in SCI in 2020 alone.The results of bibliometric analyses show that microstructure control and mechanical properties of Mg alloys are continuously the main research focus,and the corrosion and protection of Mg alloys are still widely concerned.The emerging research hot spots are mainly on functional magnesium materials,such as Mg ion batteries,hydrogen storage Mg materials,and bio-magnesium alloys.Great contributions to the research and development of magnesium alloys in 2020 have been made by Chongqing University,Chinese Academy of Sciences,Central South University,Shanghai Jiaotong University,Northeastern University,Helmholtz Zentrum Geesthacht,etc.The directions for future research are suggested,including:1)the synergistic control of microstructures to achieve high-performance magnesium alloys with concurrent high strength and superior plasticity along with high corrosion resistance and low cost;2)further development of functional magnesium materials such as Mg batteries,hydrogen storage Mg materials,structural-functional materials and bio-magnesium materials;3)studies on the effective corrosion protection and control of degradation rate of magnesium alloys;4)further improvement of advanced processing technology on Mg alloys.展开更多
Increased microvessel density in the peri-infarct region has been reported and has been correlated with longer survival times in ischemic stroke patients and has improved outcomes in ischemic animal models.This raises...Increased microvessel density in the peri-infarct region has been reported and has been correlated with longer survival times in ischemic stroke patients and has improved outcomes in ischemic animal models.This raises the possibility that enhancement of angiogenesis is one of the strategies to facilitate functional recovery after ischemic stroke.Blood vessels and neuronal cells communicate with each other using various mediators and contribute to the pathophysiology of cerebral ischemia as a unit.In this mini-review,we discuss how angiogenesis might couple with axonal outgrowth/neurogenesis and work for functional recovery after cerebral ischemia.Angiogenesis occurs within 4 to 7 days after cerebral ischemia in the border of the ischemic core and periphery.Post-ischemic angiogenesis may contribute to neuronal remodeling in at least two ways and is thought to contribute to functional recovery.First,new blood vessels that are formed after ischemia are thought to have a role in the guidance of sprouting axons by vascular endothelial growth factor and laminin/β1-integrin signaling.Second,blood vessels are thought to enhance neurogenesis in three stages:1)Blood vessels enhance proliferation of neural stem/progenitor cells by expression of several extracellular signals,2)microvessels support the migration of neural stem/progenitor cells toward the peri-infarct region by supplying oxygen,nutrients,and soluble factors as well as serving as a scaffold for migration,and 3)oxygenation induced by angiogenesis in the ischemic core is thought to facilitate the differentiation of migrated neural stem/progenitor cells into mature neurons.Thus,the regions of angiogenesis and surrounding tissue may be coupled,representing novel treatment targets.展开更多
Dyspepsia refers to group of upper gastrointestinal symptoms that occur commonly in adults. Dyspepsia is known to result from organic causes, but the majority of patients suffer from non-ulcer or functional dyspepsia....Dyspepsia refers to group of upper gastrointestinal symptoms that occur commonly in adults. Dyspepsia is known to result from organic causes, but the majority of patients suffer from non-ulcer or functional dyspepsia. Epidemiological data from population-based studies of various geographical locations have been reviewed, as they provide more realistic information. Population-based studies on true functional dyspepsia (FD) are few, due to the logistic difficulties of excluding structural disease in large numbers of people. Globally, the prevalence of uninvestigated dyspepsia (UD) varies between 7%- 45%, depending on definition used and geographical location, whilst the prevalence of FD has been noted to vary between 11%-29.2%. Risk factors for FD have been shown to include females and underlying psychological disturbances, whilst environmental/lifestyle habits such as poor socio-economic status, smoking, increased caffeine intake and ingestion of non-steroidal anti-inflammatory drugs appear to be more relevant to UD. It is clear that dyspepsia and FD in particular are common conditions globally, affecting most populations, regardless of location.展开更多
Processing of materials by ultrashort laser pulses has evolved significantly over the last decade and is starting to reveal its scientific,technological and industrial potential.In ultrafast laser manufacturing,optica...Processing of materials by ultrashort laser pulses has evolved significantly over the last decade and is starting to reveal its scientific,technological and industrial potential.In ultrafast laser manufacturing,optical energy of tightly focused femtosecond or picosecond laser pulses can be delivered to precisely defined positions in the bulk of materials via two-/multi-photon excitation on a timescale much faster than thermal energy exchange between photoexcited electrons and lattice ions.Control of photoionization and thermal processes with the highest precision,inducing local photomodification in sub-100-nm-sized regions has been achieved.State-of-the-art ultrashort laser processing techniques exploit high 0.1–1μm spatial resolution and almost unrestricted three-dimensional structuring capability.Adjustable pulse duration,spatiotemporal chirp,phase front tilt and polarization allow control of photomodification via uniquely wide parameter space.Mature opto-electrical/mechanical technologies have enabled laser processing speeds approaching meters-per-second,leading to a fast lab-to-fab transfer.The key aspects and latest achievements are reviewed with an emphasis on the fundamental relation between spatial resolution and total fabrication throughput.Emerging biomedical applications implementing micrometer feature precision over centimeter-scale scaffolds and photonic wire bonding in telecommunications are highlighted.展开更多
基金The content in this review is financially supported by the National Key Research and Development Program of China(No.2016YFB0301100,2017YFF0209100)the National Science Foundation for Scientists of China(No.51531002,51474043,51701027,51971042,51901028)the Chongqing Academician Special Fund(cstc2018jcyj-yszxX0007,cstc2019yszxjcyjX0004).
文摘In the past two years,significant progresses have been achieved in high-performance cast and wrought magnesium and magnesium alloys,magnesium-based composites,advanced cast technologies,advanced processing technologies,and functional magnesium materials,such as Mg ion batteries,hydrogen storage Mg materials,bio-magnesium alloys,etc.Great contributions to the development of new magnesium alloys and their processing technologies have been made by Chongqing University,Shanghai Jiaotong University,Chinese Academy of Sciences,Helmholtz Zentrum Geesthacht,Queensland University,Brunel University,etc.This review paper is aimed to summarize the latest important advances in cast magnesium alloys,wrought magnesium alloys and functional magnesium materials worldwide in 2018–2019,including both the development of new materials and the innovation of their processing technologies.Based on the issues and challenges identified here,some future research directions are suggested,including further development of high-performance magnesium alloys having high strength and superior plasticity together with high corrosion resistance and low cost,and fundamental research on the phase diagram,diffusion,precipitation,etc.,as well as the development of advanced welding and joining technology.
基金National Natural Science Foundation of China, No.40871120 National Key Technology Research and De- velopment Program, No.2007BAC06B03
文摘This review summarizes main research findings in soil fauna eco-geography in China in the past 30 years. The subject areas and main results were overviewed including biodiversity and eco-geological distribution of soil fauna communities. Studies of ecological distributions of soil fauna and dynamic ranges in space from tropical, subtropical to temperate regions, and in categories from forest, grassland, desert, wetland, farmland to urban ecosystems, the responses and indications of soil fauna to soil environments. Effects of intensive disturbance such as fire, grazing, farming, fertilization on soil fauna include sensitive (e.g. nematode) and rare groups and community indexes. The functions of soil fauna were discussed including environmental construction, environmental purification, litter decomposition and elements cycling. Interactions between soil fauna and other biota in soil ecosystems and linking between aboveground and belowground diversity and the effects of global change on soil fauna community in China were also included. Finally, the authors pointed out common interests in soil fauna eco-geographical studies, which include application of molecule biology into soil fauna taxa; function and mechanism of soil fauna community diversity; interaction between aboveground and belowground ecosystems; effects of disturbance, pollution, biological invasion, and global change on soil fauna community and function. The review is to provide a scientific basis for promoting soil fauna eco-geographical studies in China.
基金This work was supported by a startup fund from Southern Medical University.
文摘Functional enrichment analysis is pivotal for interpreting highthroughput omics data in life science.It is crucial for this type of tool to use the latest annotation databases for as many organisms as possible.To meet these requirements,we present here an updated version of our popular Bioconductor package,clusterProfiler 4.0.This package has been enhanced considerably compared with its original version published 9 years ago.The new version provides a universal interface for functional enrichment analysis in thousands of organisms based on internally supported ontologies and pathways as well as annotation data provided by users or derived from online databases.It also extends the dplyr and ggplot2 packages to offer tidy interfaces for data operation and visualization.Other new features include gene set enrichment analysis and comparison of enrichment results from multiple gene lists.We anticipate that clusterProfiler 4.0 will be applied to a wide range of scenarios across diverse organisms.
文摘The main purpose of this study was to examine the effects of plant species diversity and functional composition (the identity of the plant functional groups) on ecosystem stability of Stipa, communities in the Inner Mongolia Plateau. The research work was based on a 12-year study (from 1984 to 1995) of species abundance, diversity, and primary productivity of four Stipa communities, i.e. S. baicalensis Roshev., S. grandis P. Smirn., S, krylovii Roshev., and S. klemenzii Roshev. respectively. The Shnnon-Wiener index was used as a measurement of plant diversity, while functional composition was used to differentiate the functional groups that were included in the communities. The plant species of four Stipa communities were classified into functional groups based on the differences in life forms and ecological groups, which influence their performance in resource requirements, seasonality of growth, tolerance to water stress, and life history. Plant species were classified into five functional groups based on their differences in life form, shrubs and half shrubs, perennial bunch grasses, perennial rhizome grasses, forbs, annuals and biennials. Based on their differences in water requirement these species were classified into four functional groups: xerads, intermediate xerads, intermediate mesophytes, and mesophytes. The results showed: 1) Plant species diversity stabilized ecosystem processes. Shannon-Wiener index were 2.401 4, 2.172 0, 1.624 8, 0.354 3 from S. baicalensis community to S. grandis, S. krylovii and S. klemenzii community, respectively. The dynamics of the aboveground net primary productivity (ANPP) for a 12-year's period showed a reverse pattern, the coefficients of variation of the four communities were 21.94%, 20.63%, 29.21% and 39.72% respectively. 2) The Life form functional group component of diversity was a greater determinant of the ecosystem processes than the species component of diversity. The effects of perennial bunch grasses, perennial rhizome grasses and forbs on community stability w
基金financially supported by the National Key Research and Development Program of China(Project No.2016YFB0301100&Project No.2016YFB0700403)the Chongqing Academician Special Fund(Project No.cstc2018jcyj-yszx X0007&Project No.cstc2020yszx-jcyj X0001)+1 种基金Chongqing Research Program of Basic Research and Frontier Technology(Project No.cstc2019jcyj-msxm0438)the 111 Project(Project No.B16007)by the Ministry of Education and the State Administration of Foreign Experts Affairs of China。
文摘Research on magnesium alloys continues to attract great attention,with more than 3000 papers on magnesium and magnesium alloys published and indexed in SCI in 2020 alone.The results of bibliometric analyses show that microstructure control and mechanical properties of Mg alloys are continuously the main research focus,and the corrosion and protection of Mg alloys are still widely concerned.The emerging research hot spots are mainly on functional magnesium materials,such as Mg ion batteries,hydrogen storage Mg materials,and bio-magnesium alloys.Great contributions to the research and development of magnesium alloys in 2020 have been made by Chongqing University,Chinese Academy of Sciences,Central South University,Shanghai Jiaotong University,Northeastern University,Helmholtz Zentrum Geesthacht,etc.The directions for future research are suggested,including:1)the synergistic control of microstructures to achieve high-performance magnesium alloys with concurrent high strength and superior plasticity along with high corrosion resistance and low cost;2)further development of functional magnesium materials such as Mg batteries,hydrogen storage Mg materials,structural-functional materials and bio-magnesium materials;3)studies on the effective corrosion protection and control of degradation rate of magnesium alloys;4)further improvement of advanced processing technology on Mg alloys.
基金supported by a Grant-in-Aid for Scientific Research(Research Project No.15K19478 and 18K07493,both to MK)Japan Science and Technology Agency(JST),the Translational Research program+7 种基金Strategic Promotion for practical application of Innovative medical Technology(TR-SPRINT)supported by Japan Agency for Medical Research and Development(AMED)under Grant No.JP19lm0203023a grant from Takeda Science Foundationthe Bayer Scholarship for Cardiovascular ResearchJapan Cardiovascular Research FoundationAstellas Foundation for Research on Metabolic DisordersYoung Investigator Okamoto AwardMedical Research Encouragement Prize of the Japan Medical Association(to MK)supported by a grant from Tsubaki Memorial Foundation(to MH and IN)
文摘Increased microvessel density in the peri-infarct region has been reported and has been correlated with longer survival times in ischemic stroke patients and has improved outcomes in ischemic animal models.This raises the possibility that enhancement of angiogenesis is one of the strategies to facilitate functional recovery after ischemic stroke.Blood vessels and neuronal cells communicate with each other using various mediators and contribute to the pathophysiology of cerebral ischemia as a unit.In this mini-review,we discuss how angiogenesis might couple with axonal outgrowth/neurogenesis and work for functional recovery after cerebral ischemia.Angiogenesis occurs within 4 to 7 days after cerebral ischemia in the border of the ischemic core and periphery.Post-ischemic angiogenesis may contribute to neuronal remodeling in at least two ways and is thought to contribute to functional recovery.First,new blood vessels that are formed after ischemia are thought to have a role in the guidance of sprouting axons by vascular endothelial growth factor and laminin/β1-integrin signaling.Second,blood vessels are thought to enhance neurogenesis in three stages:1)Blood vessels enhance proliferation of neural stem/progenitor cells by expression of several extracellular signals,2)microvessels support the migration of neural stem/progenitor cells toward the peri-infarct region by supplying oxygen,nutrients,and soluble factors as well as serving as a scaffold for migration,and 3)oxygenation induced by angiogenesis in the ischemic core is thought to facilitate the differentiation of migrated neural stem/progenitor cells into mature neurons.Thus,the regions of angiogenesis and surrounding tissue may be coupled,representing novel treatment targets.
文摘Dyspepsia refers to group of upper gastrointestinal symptoms that occur commonly in adults. Dyspepsia is known to result from organic causes, but the majority of patients suffer from non-ulcer or functional dyspepsia. Epidemiological data from population-based studies of various geographical locations have been reviewed, as they provide more realistic information. Population-based studies on true functional dyspepsia (FD) are few, due to the logistic difficulties of excluding structural disease in large numbers of people. Globally, the prevalence of uninvestigated dyspepsia (UD) varies between 7%- 45%, depending on definition used and geographical location, whilst the prevalence of FD has been noted to vary between 11%-29.2%. Risk factors for FD have been shown to include females and underlying psychological disturbances, whilst environmental/lifestyle habits such as poor socio-economic status, smoking, increased caffeine intake and ingestion of non-steroidal anti-inflammatory drugs appear to be more relevant to UD. It is clear that dyspepsia and FD in particular are common conditions globally, affecting most populations, regardless of location.
基金support by a project‘ReSoft’(SEN-13/2015)from the Research Council of Lithuaniasupport by JSPS Kakenhi Grant No.15K04637+1 种基金support via ARC Discovery DP120102980Gintas Šlekys for the partnership project with Altechna Ltd on industrial fs-laser fabrication.
文摘Processing of materials by ultrashort laser pulses has evolved significantly over the last decade and is starting to reveal its scientific,technological and industrial potential.In ultrafast laser manufacturing,optical energy of tightly focused femtosecond or picosecond laser pulses can be delivered to precisely defined positions in the bulk of materials via two-/multi-photon excitation on a timescale much faster than thermal energy exchange between photoexcited electrons and lattice ions.Control of photoionization and thermal processes with the highest precision,inducing local photomodification in sub-100-nm-sized regions has been achieved.State-of-the-art ultrashort laser processing techniques exploit high 0.1–1μm spatial resolution and almost unrestricted three-dimensional structuring capability.Adjustable pulse duration,spatiotemporal chirp,phase front tilt and polarization allow control of photomodification via uniquely wide parameter space.Mature opto-electrical/mechanical technologies have enabled laser processing speeds approaching meters-per-second,leading to a fast lab-to-fab transfer.The key aspects and latest achievements are reviewed with an emphasis on the fundamental relation between spatial resolution and total fabrication throughput.Emerging biomedical applications implementing micrometer feature precision over centimeter-scale scaffolds and photonic wire bonding in telecommunications are highlighted.