Previous studies have reported age-specific pathological and functional outcomes in young and aged patients suffering spinal cord injury,but the mechanisms remain poorly understood. In this study, we examined mice wit...Previous studies have reported age-specific pathological and functional outcomes in young and aged patients suffering spinal cord injury,but the mechanisms remain poorly understood. In this study, we examined mice with spinal cord injury. Gene expression profiles from the Gene Expression Omnibus database (accession number GSE93561) were used, including spinal cord samples from 3 young injured mice (2–3-months old, induced by Impactor at Th9 level) and 3 control mice (2–3-months old, no treatment), as well as 2 aged injured mice (15–18-months old, induced by Impactor at Th9 level) and 2 control mice (15–18-months old, no treatment). Differentially expressed genes (DEGs) in spinal cord tissue from injured and control mice were identified using the Linear Models for Microarray data method,with a threshold of adjusted P 〈 0.05 and |logFC(fold change)| 〉 1.5. Protein–protein interaction networks were constructed using data from the STRING database, followed by module analysis by Cytoscape software to screen crucial genes. Kyoto encyclopedia of genes and genomes pathway and Gene Ontology enrichment analyses were performed to investigate the underlying functions of DEGs using Database for Annotation, Visualization and Integrated Discovery. Consequently, 1,604 and 1,153 DEGs were identified between injured and normal control mice in spinal cord tissue of aged and young mice, respectively. Furthermore, a Venn diagram showed that 960 DEGs were shared among aged and young mice, while 644 and 193 DEGs were specific to aged and young mice, respectively. Functional enrichment indicates that shared DEGs are involved in osteoclast differentiation, extracellular matrix–receptor interaction, nuclear factor-kappa B signaling pathway, and focal adhesion. Unique genes for aged and young injured groups were involved in the cell cycle (upregulation of PLK1) and complement (upregulation of C3) activation, respectively. These findings were confirmed by functional analysis of genes i展开更多
Fluids in subduction zones can have major effects on subduction dynamics.However,geophysical constraints on the scale and impact of fluid flow during continental subduction are still limited.Here we analyze the VP/VS ...Fluids in subduction zones can have major effects on subduction dynamics.However,geophysical constraints on the scale and impact of fluid flow during continental subduction are still limited.Here we analyze the VP/VS ratios in the Western Alpine region,hosting one of the best-preserved fossil continental subduction zones worldwide,to investigate the impact of fluid flow during continental subduction.We found a belt of high VP/VS ratios>1.9 on the upper-plate side of the subduction zone,consistent with a partially serpentinized upper-plate mantle,and a belt of unusually low VP/VS ratios<1.7 on the lower-plate side,at depths shallower than 30 km.We propose that these low VP/VS ratios result from a widespread network of silica-rich veins,indicating past fluid flow along the continental subduction interface.Our results suggest that past fluid flow may have reduced the effective stress along the subduction interface thus favoring continental subduction.展开更多
It has been well documented that organic amendment affects soil nematode community structure.However,little is known about the effect of organic amendment amount on soil nematodes.To assess the effect of the amount of...It has been well documented that organic amendment affects soil nematode community structure.However,little is known about the effect of organic amendment amount on soil nematodes.To assess the effect of the amount of organic amendments on soil nematode community structure and metabolic activity,the community composition,abundance,and metabolic footprints of soil nematodes were determined in a long-term field experiment with various amounts of organic amendment in Northeast China.Fertilization treatments included an unfertilized control(CK),chemical fertilizer without manure amendment(OM0),manure applied at 7.5 Mg ha^-1 plus chemical fertilizer(OM1),and manure applied at 22.5 Mg ha^-1 plus chemical fertilizer(OM2).A total of 46 nematode genera were found.Treatments with the largest amount of organic amendment had the smallest number of plant parasite genera(5),but a largest number of dominant genera(7).Soil nematodes,bacterivores,and fungivores were the most abundant in OM2,followed by OM1,and the lowest in OM0 and CK.Organic amendment increased the enrichment index(EI),and the large amount of organic amendment increased the metabolic footprints of bacterivore(Baf)and fungivore(Fuf)and enrichment footprint(Ef).The relationships between Baf(or Fuf)and the increases in soil organic carbon(?SOC)and total nitrogen(?TN)were stronger than those of bacterivore(or fungivore)abundance with?SOC and?TN,except for the relationship between bacterivore abundance and ?SOC.The EI and Ef were positively correlated with ?SOC and ?TN.These findings suggest that the amount of organic amendment affects soil nematode activity and function at entry levels in soil food web,and that metabolic footprints of soil nematodes may be better indicators than their abundances in assessing their relationships with soil nutrients.展开更多
BACKGROUND Heart failure is a health burden responsible for high morbidity and mortality worldwide, and dilated cardiomyopathy(DCM) is one of the most common causes of heart failure. DCM is a disease of the heart musc...BACKGROUND Heart failure is a health burden responsible for high morbidity and mortality worldwide, and dilated cardiomyopathy(DCM) is one of the most common causes of heart failure. DCM is a disease of the heart muscle and is characterized by enlargement and dilation of at least one ventricle alongside impaired contractility with left ventricular ejection fraction < 40%. It is also associated with abnormalities in cytoskeletal proteins, mitochondrial ATP transporter, microvasculature, and fibrosis. However, the pathogenesis and potential biomarkers of DCM remain to be investigated.AIM To investigate the candidate genes and pathways involved in DCM patients.METHODS Two expression datasets(GSE3585 and GSE5406) were downloaded from the Gene Expression Omnibus database. The differentially expressed genes(DEGs) between the DCM patients and healthy individuals were identified using the R package “linear models for microarray data.” The pathways with common DEGs were analyzed via Gene Ontology(GO), Kyoto Encyclopedia of Genes and Genomes(KEGG), and gene set enrichment analyses. Moreover, a protein-protein interaction network(PPI) was constructed to identify the hub genes and modules. The MicroRNA Database was applied to predict the microRNAs(miRNAs) targeting the hub genes. Additionally, immune cell infiltration in DCM was analyzed using CIBERSORT.RESULTS In total, 97 DEGs(47 upregulated and 50 downregulated) were identified. GO analysis showed that the DEGs were mainly enriched in “response to growth factor,” “extracellular matrix,” and “extracellular matrix structural constituent.” KEGG pathway analysis indicated that the DEGs were mainly enriched in “protein digestion and absorption” and “interleukin 17(IL-17) signaling pathway.” The PPI network suggested that collagen type Ⅲ alpha 1 chain(COL3A1) and COL1A2 contribute to the pathogenesis of DCM. Additionally, visualization of the interactions between miRNAs and the hub genes revealed that hsa-miR-5682 and hsa-miR-4500 interacted with both 展开更多
基金supported by the National Science Fund for Distinguished Young Scientists of China,No.81601052
文摘Previous studies have reported age-specific pathological and functional outcomes in young and aged patients suffering spinal cord injury,but the mechanisms remain poorly understood. In this study, we examined mice with spinal cord injury. Gene expression profiles from the Gene Expression Omnibus database (accession number GSE93561) were used, including spinal cord samples from 3 young injured mice (2–3-months old, induced by Impactor at Th9 level) and 3 control mice (2–3-months old, no treatment), as well as 2 aged injured mice (15–18-months old, induced by Impactor at Th9 level) and 2 control mice (15–18-months old, no treatment). Differentially expressed genes (DEGs) in spinal cord tissue from injured and control mice were identified using the Linear Models for Microarray data method,with a threshold of adjusted P 〈 0.05 and |logFC(fold change)| 〉 1.5. Protein–protein interaction networks were constructed using data from the STRING database, followed by module analysis by Cytoscape software to screen crucial genes. Kyoto encyclopedia of genes and genomes pathway and Gene Ontology enrichment analyses were performed to investigate the underlying functions of DEGs using Database for Annotation, Visualization and Integrated Discovery. Consequently, 1,604 and 1,153 DEGs were identified between injured and normal control mice in spinal cord tissue of aged and young mice, respectively. Furthermore, a Venn diagram showed that 960 DEGs were shared among aged and young mice, while 644 and 193 DEGs were specific to aged and young mice, respectively. Functional enrichment indicates that shared DEGs are involved in osteoclast differentiation, extracellular matrix–receptor interaction, nuclear factor-kappa B signaling pathway, and focal adhesion. Unique genes for aged and young injured groups were involved in the cell cycle (upregulation of PLK1) and complement (upregulation of C3) activation, respectively. These findings were confirmed by functional analysis of genes i
基金supported by the National Natural Science Foundation of China(Grant No.42488201)。
文摘Fluids in subduction zones can have major effects on subduction dynamics.However,geophysical constraints on the scale and impact of fluid flow during continental subduction are still limited.Here we analyze the VP/VS ratios in the Western Alpine region,hosting one of the best-preserved fossil continental subduction zones worldwide,to investigate the impact of fluid flow during continental subduction.We found a belt of high VP/VS ratios>1.9 on the upper-plate side of the subduction zone,consistent with a partially serpentinized upper-plate mantle,and a belt of unusually low VP/VS ratios<1.7 on the lower-plate side,at depths shallower than 30 km.We propose that these low VP/VS ratios result from a widespread network of silica-rich veins,indicating past fluid flow along the continental subduction interface.Our results suggest that past fluid flow may have reduced the effective stress along the subduction interface thus favoring continental subduction.
基金supported by the National Key Research and Development Program of China (No.2016YFD02003096)National Natural Science Foundation of China (Nos.41371296 and 41571219)Young Scientist Group of Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences (No.DLSXZ1605)
文摘It has been well documented that organic amendment affects soil nematode community structure.However,little is known about the effect of organic amendment amount on soil nematodes.To assess the effect of the amount of organic amendments on soil nematode community structure and metabolic activity,the community composition,abundance,and metabolic footprints of soil nematodes were determined in a long-term field experiment with various amounts of organic amendment in Northeast China.Fertilization treatments included an unfertilized control(CK),chemical fertilizer without manure amendment(OM0),manure applied at 7.5 Mg ha^-1 plus chemical fertilizer(OM1),and manure applied at 22.5 Mg ha^-1 plus chemical fertilizer(OM2).A total of 46 nematode genera were found.Treatments with the largest amount of organic amendment had the smallest number of plant parasite genera(5),but a largest number of dominant genera(7).Soil nematodes,bacterivores,and fungivores were the most abundant in OM2,followed by OM1,and the lowest in OM0 and CK.Organic amendment increased the enrichment index(EI),and the large amount of organic amendment increased the metabolic footprints of bacterivore(Baf)and fungivore(Fuf)and enrichment footprint(Ef).The relationships between Baf(or Fuf)and the increases in soil organic carbon(?SOC)and total nitrogen(?TN)were stronger than those of bacterivore(or fungivore)abundance with?SOC and?TN,except for the relationship between bacterivore abundance and ?SOC.The EI and Ef were positively correlated with ?SOC and ?TN.These findings suggest that the amount of organic amendment affects soil nematode activity and function at entry levels in soil food web,and that metabolic footprints of soil nematodes may be better indicators than their abundances in assessing their relationships with soil nutrients.
基金Supported by National Nature Science Foundation of China,No.81960051,No.8217021743,and No.82160060Project of High–Level Innovative Talents of Guizhou Province,No.[2016]4034Construction Funding from Characteristic Key Laboratory of Guizhou Province,No.[2021]313.
文摘BACKGROUND Heart failure is a health burden responsible for high morbidity and mortality worldwide, and dilated cardiomyopathy(DCM) is one of the most common causes of heart failure. DCM is a disease of the heart muscle and is characterized by enlargement and dilation of at least one ventricle alongside impaired contractility with left ventricular ejection fraction < 40%. It is also associated with abnormalities in cytoskeletal proteins, mitochondrial ATP transporter, microvasculature, and fibrosis. However, the pathogenesis and potential biomarkers of DCM remain to be investigated.AIM To investigate the candidate genes and pathways involved in DCM patients.METHODS Two expression datasets(GSE3585 and GSE5406) were downloaded from the Gene Expression Omnibus database. The differentially expressed genes(DEGs) between the DCM patients and healthy individuals were identified using the R package “linear models for microarray data.” The pathways with common DEGs were analyzed via Gene Ontology(GO), Kyoto Encyclopedia of Genes and Genomes(KEGG), and gene set enrichment analyses. Moreover, a protein-protein interaction network(PPI) was constructed to identify the hub genes and modules. The MicroRNA Database was applied to predict the microRNAs(miRNAs) targeting the hub genes. Additionally, immune cell infiltration in DCM was analyzed using CIBERSORT.RESULTS In total, 97 DEGs(47 upregulated and 50 downregulated) were identified. GO analysis showed that the DEGs were mainly enriched in “response to growth factor,” “extracellular matrix,” and “extracellular matrix structural constituent.” KEGG pathway analysis indicated that the DEGs were mainly enriched in “protein digestion and absorption” and “interleukin 17(IL-17) signaling pathway.” The PPI network suggested that collagen type Ⅲ alpha 1 chain(COL3A1) and COL1A2 contribute to the pathogenesis of DCM. Additionally, visualization of the interactions between miRNAs and the hub genes revealed that hsa-miR-5682 and hsa-miR-4500 interacted with both