CAD model retrieval based on functional semantics is more significant than content-based 3D model retrieval during the mechanical conceptual design phase. However, relevant research is still not fully discussed. There...CAD model retrieval based on functional semantics is more significant than content-based 3D model retrieval during the mechanical conceptual design phase. However, relevant research is still not fully discussed. Therefore, a functional semantic-based CAD model annotation and retrieval method is proposed to support mechanical conceptual design and design reuse, inspire designer creativity through existing CAD models, shorten design cycle, and reduce costs. Firstly, the CAD model functional semantic ontology is constructed to formally represent the functional semantics of CAD models and describe the mechanical conceptual design space comprehensively and consistently. Secondly, an approach to represent CAD models as attributed adjacency graphs(AAG) is proposed. In this method, the geometry and topology data are extracted from STEP models. On the basis of AAG, the functional semantics of CAD models are annotated semi-automatically by matching CAD models that contain the partial features of which functional semantics have been annotated manually, thereby constructing CAD Model Repository that supports model retrieval based on functional semantics. Thirdly, a CAD model retrieval algorithm that supports multi-function extended retrieval is proposed to explore more potential creative design knowledge in the semantic level. Finally, a prototype system, called Functional Semantic-based CAD Model Annotation and Retrieval System(FSMARS), is implemented. A case demonstrates that FSMARS can successfully botain multiple potential CAD models that conform to the desired function. The proposed research addresses actual needs and presents a new way to acquire CAD models in the mechanical conceptual design phase.展开更多
Embodied semantics theory asserts that the meaning of action-related words is neurally represented through networks that overlap with or are identical to networks involved in sensory-motor processing. While some studi...Embodied semantics theory asserts that the meaning of action-related words is neurally represented through networks that overlap with or are identical to networks involved in sensory-motor processing. While some studies supporting this theory have focused on Chinese characters, less attention has been paid to their semantic radicals. Indeed, there is still disagreement about whether these radicals are processed independently. The present study investigated whether radicals are processed separately and, if so, whether this processing occurs in sensory-motor regions. Materials consisted of 72 high-frequency Chinese characters, with 18 in each of four categories: hand-action verbs with and without hand-radicals, and verbs not related to hand actions, with and without hand-radicals. Twenty-eight participants underwent functional MRI scans while reading the characters. Compared to characters without hand-radicals, reading characters with hand-radicals activated the right medial frontal gyrus. Verbs involving hand-action activated the left inferior parietal lobule, possibly reflecting integration of information in the radical with the semantic meaning of the verb. The findings may be consistent with embodied semantics theory and suggest that neural representation of radicals is indispensable in processing Chinese characters.展开更多
基金Supported by National Natural Science Foundation of China (Grant No.51175287)National Science and Technology Major Project of China (Grant No.2011ZX02403)
文摘CAD model retrieval based on functional semantics is more significant than content-based 3D model retrieval during the mechanical conceptual design phase. However, relevant research is still not fully discussed. Therefore, a functional semantic-based CAD model annotation and retrieval method is proposed to support mechanical conceptual design and design reuse, inspire designer creativity through existing CAD models, shorten design cycle, and reduce costs. Firstly, the CAD model functional semantic ontology is constructed to formally represent the functional semantics of CAD models and describe the mechanical conceptual design space comprehensively and consistently. Secondly, an approach to represent CAD models as attributed adjacency graphs(AAG) is proposed. In this method, the geometry and topology data are extracted from STEP models. On the basis of AAG, the functional semantics of CAD models are annotated semi-automatically by matching CAD models that contain the partial features of which functional semantics have been annotated manually, thereby constructing CAD Model Repository that supports model retrieval based on functional semantics. Thirdly, a CAD model retrieval algorithm that supports multi-function extended retrieval is proposed to explore more potential creative design knowledge in the semantic level. Finally, a prototype system, called Functional Semantic-based CAD Model Annotation and Retrieval System(FSMARS), is implemented. A case demonstrates that FSMARS can successfully botain multiple potential CAD models that conform to the desired function. The proposed research addresses actual needs and presents a new way to acquire CAD models in the mechanical conceptual design phase.
基金supported by a grant from Ministry of Education,Taiwan,China under the Aiming for the Top University Plan at Taiwan Normal University,China
文摘Embodied semantics theory asserts that the meaning of action-related words is neurally represented through networks that overlap with or are identical to networks involved in sensory-motor processing. While some studies supporting this theory have focused on Chinese characters, less attention has been paid to their semantic radicals. Indeed, there is still disagreement about whether these radicals are processed independently. The present study investigated whether radicals are processed separately and, if so, whether this processing occurs in sensory-motor regions. Materials consisted of 72 high-frequency Chinese characters, with 18 in each of four categories: hand-action verbs with and without hand-radicals, and verbs not related to hand actions, with and without hand-radicals. Twenty-eight participants underwent functional MRI scans while reading the characters. Compared to characters without hand-radicals, reading characters with hand-radicals activated the right medial frontal gyrus. Verbs involving hand-action activated the left inferior parietal lobule, possibly reflecting integration of information in the radical with the semantic meaning of the verb. The findings may be consistent with embodied semantics theory and suggest that neural representation of radicals is indispensable in processing Chinese characters.