Because of the combination of optimization algorithms and full wave equations, full-waveform inversion(FWI) has become the frontier of the study of seismic exploration and is gradually becoming one of the essential to...Because of the combination of optimization algorithms and full wave equations, full-waveform inversion(FWI) has become the frontier of the study of seismic exploration and is gradually becoming one of the essential tools for obtaining the Earth interior information. However, the application of conventional FWI to pure reflection data in the absence of a highly accurate starting velocity model is difficult. Compared to other types of seismic waves, reflections carry the information of the deep part of the subsurface. Reflection FWI, therefore, is able to improve the accuracy of imaging the Earth interior further. Here, we demonstrate a means of achieving this successfully by interleaving least-squares RTM with a version of reflection FWI in which the tomographic gradient that is required to update the background macro-model is separated from the reflectivity gradient using the Born approximation during forward modeling. This provides a good update to the macro-model. This approach is then followed by conventional FWI to obtain a final high-fidelity high-resolution result from a poor starting model using only reflection data.Further analysis reveals the high-resolution result is achieved due to a deconvolution imaging condition implicitly used by FWI.展开更多
Based on the analysis of impedance tensor data, tipper data, and the conjugate gradient algorithm, we develop a three-dimensional (3D) conjugate gradient algorithm for inverting magnetotelluric full information data...Based on the analysis of impedance tensor data, tipper data, and the conjugate gradient algorithm, we develop a three-dimensional (3D) conjugate gradient algorithm for inverting magnetotelluric full information data determined from five electric and magnetic field components and discuss the method to use the full information data for quantitative interpretation of 3D inversion results. Results from the 3D inversion of synthetic data indicate that the results from inverting full information data which combine the impedance tensor and tipper data are better than results from inverting only the impedance tensor data (or tipper data) in improving resolution and reliability. The synthetic examples also demonstrate the validity and stability of this 3D inversion algorithm.展开更多
With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processin...With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processing and interpretation of large-scale high-precision data, the use of the graphics processing unit process unit (GPU) and preconditioning methods are very important in the data inversion. In this paper, an improved preconditioned conjugate gradient algorithm is proposed by combining the symmetric successive over-relaxation (SSOR) technique and the incomplete Choleksy decomposition conjugate gradient algorithm (ICCG). Since preparing the preconditioner requires extra time, a parallel implement based on GPU is proposed. The improved method is then applied in the inversion of noise- contaminated synthetic data to prove its adaptability in the inversion of 3D FTG data. Results show that the parallel SSOR-ICCG algorithm based on NVIDIA Tesla C2050 GPU achieves a speedup of approximately 25 times that of a serial program using a 2.0 GHz Central Processing Unit (CPU). Real airbome gravity-gradiometry data from Vinton salt dome (south- west Louisiana, USA) are also considered. Good results are obtained, which verifies the efficiency and feasibility of the proposed parallel method in fast inversion of 3D FTG data.展开更多
Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rat...Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rate performance,whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance.Herein,a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process.It realizes not only a stable Li_(2)TiO_(3)coating layer with 3D diffusion channels for fast Li^(+)ions transfer,but also dopes partial Ti^(4+)ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure.Consequently,the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability,elevated thermal stability with decomposition temperature from 289.57℃to 321.72℃,and enhanced cycle performance(205.1 mAh g^(-1)after 150 cycles)with slowed voltage drop(1.67 mV per cycle).This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides,which can facilitate its practical application for developing higher energy density lithium-ion batteries.展开更多
The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mappin...The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mapping, resources exploration, magnetic navigation, and others. However, it is very difficult to measure the full magnetic tensor gradient using existing engineering technology. We present a method to use triaxial aeromagnetic gradient measurements for deriving the full MGT. The method uses the triaxial gradient data and makes full use of the variation of the magnetic anomaly modulus in three dimensions to obtain a self-consistent magnetic tensor gradient. Numerical simulations show that the full MGT data obtained with the proposed method are of high precision and satisfy the requirements of data processing. We selected triaxial aeromagnetic gradient data from the Hebei Province for calculating the full MGT. Data processing shows that using triaxial tensor gradient data allows to take advantage of the spatial rate of change of the total field in three dimensions and suppresses part of the independent noise in the aeromagnetic gradient. The calculated tensor components have improved resolution, and the transformed full tensor gradient satisfies the requirement of geological mapping and interpretation.展开更多
A novel solid-liquid interdiffusion(SLID)bonding method with the assistance of temperature gradient(TG)was carried out to bonding Cu and Ni substrates with Sn as interlayer.The element distribution and grain morpholog...A novel solid-liquid interdiffusion(SLID)bonding method with the assistance of temperature gradient(TG)was carried out to bonding Cu and Ni substrates with Sn as interlayer.The element distribution and grain morphology of interfacial intermetallic compound(IMC)in Cu/Sn/Ni micro-joints during both SLID and TG-SLID bonding and in the final Cu/(Cu,Ni)_(6)Sn_(5)/Ni full IMC micro-joints were analyzed.Under the effect of Cu-Ni cross-interaction,interfacial(Cu,Ni)_(6)Sn_(5) dominated the IMC growth at all the interfaces.The morphology of the(Cu,Ni)_(6)Sn_(5) grains was closely related to Ni content with three levels of low,medium and high.The full IMC micro-joints consisted of L-(Cu,Ni)_(6) Sn_(5),M-(Cu,Ni)_(6)Sn_(5) and H-(Cu,Ni)_(6)Sn_(5) grains after SLID bonding or TG-SLID bonding with Ni as hot end,while only L-(Cu,Ni)_(6)Sn_(5) grains after TG-SLID bonding with Cu as hot end,showing that the direction of TG had a remarkably effect on the growth and morphology of the interfacial(Cu,Ni)_(6)Sn_(5) during TG-SLID bonding.Thermodynamic analysis revealed the key molar latent heat and critical Ni content between fine-rounded-like(Cu,Ni)_(6)Sn_(5) and block-like(Cu,Ni)_(6)Sn_(5) were 17,725.4 J and 11.0 at.%at 260℃,respectively.Moreover,the growth kinetic of the interfacial IMC was analyzed in detail during bonding with and without TG.Under the combination of TG and Cu-Ni cross-interaction,void-free full IMC micro-joints were fast formed by TG-SLID bonding with Cu as hot end.This bonding method may present a feasible solution to solve the problems of low formation efficiency and inevitable Cu_(3) Sn growth of full IMC joints for 3 D packaging applications.展开更多
The low-wavenumber components in the gradient of full waveform inversion(FWI)play a vital role in the stability of the inversion.However,when FWI is implemented in some high frequencies and current models are not far ...The low-wavenumber components in the gradient of full waveform inversion(FWI)play a vital role in the stability of the inversion.However,when FWI is implemented in some high frequencies and current models are not far away from the real velocity model,an excessive number of low-wavenumber components in the gradient will also reduce the convergence rate and inversion accuracy.To solve this problem,this paper firstly derives a formula of scattering angle weighted gradient in FWI,then proposes a hybrid gradient.The hybrid gradient combines the conventional gradient of FWI with the scattering angle weighted gradient in each inversion frequency band based on an empirical formula derived herein.Using weighted hybrid mode,we can retain some low-wavenumber components in the initial lowfrequency inversion to ensure the stability of the inversion,and use more high-wavenumber components in the high-frequency inversion to improve the convergence rate.The results of synthetic data experiment demonstrate that compared to the conventional FWI,the FWI based on the proposed hybrid gradient can effectively reduce the low-wavenumber components in the gradient under the premise of ensuring inversion stability.It also greatly enhances the convergence rate and inversion accuracy,especially in the deep part of the model.And the field marine seismic data experiment also illustrates that the FWI based on hybrid gradient(HGFWI)has good stability and adaptability.展开更多
Geological structures often exhibit smooth characteristics away from sharp discontinuities. One aim of geophysical inversion is to recover information about the smooth structures as well as about the sharp discontinui...Geological structures often exhibit smooth characteristics away from sharp discontinuities. One aim of geophysical inversion is to recover information about the smooth structures as well as about the sharp discontinuities. Because no specific operator can provide a perfect sparse representation of complicated geological models, hyper-parameter regularization inversion based on the iterative split Bregman method was used to recover the features of both smooth and sharp geological structures. A novel preconditioned matrix was proposed, which counteracted the natural decay of the sensitivity matrix and its inverse matrix was calculated easily. Application of the algorithm to synthetic data produces density models that are good representations of the designed models. The results show that the algorithm proposed is feasible and effective.展开更多
Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based ...Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based on the optimal steep descent methods, we present an algorithm which combines the preconditioned bi-conjugated gradient stable method and the multi-grid method to compute the wave propagation and the gradient space. The multiple scale prosperity of the waveform inversion and the multi-grid method can overcome the inverse problems local minima defect and accelerate convergence. The local inhomogeneous three-hole model simulated results and the Marmousi model certify the algorithm effectiveness.展开更多
全双工系统能实现在同一时隙与同一频率传输数据,相比于半双工系统能大大地提升数据吞吐量和频谱效率。为了进一步提高全双工多输入多输出(Multi-input and multi-output,MIMO)中继系统传输速率,本文基于放大转发(Amplify-and-forward,...全双工系统能实现在同一时隙与同一频率传输数据,相比于半双工系统能大大地提升数据吞吐量和频谱效率。为了进一步提高全双工多输入多输出(Multi-input and multi-output,MIMO)中继系统传输速率,本文基于放大转发(Amplify-and-forward,AF)传输模式,在全双工双向中继系统中引入梯度下降算法,将用户发送端、接收端波束成形与中继端波束成形矩阵相结合设计一种最大化速率的交替迭代算法,并构造出一种最小均方误差(Minimum mean square error,MMSE)迭代算法作为初始条件,在此基础上推导出中继接收端与发射端的波束成形矩阵表达式。仿真结果表明,本文构造的交替迭代算法收敛速度快,而且相比于迫零、最小均方误差以及最大泄信噪比算法,和速率有显著提高。展开更多
The method of 3D polar transformation of full gravity potential gradient vectors is based on the geometric properties of the crossing points of complete gradient of the potential to localize the source region that cau...The method of 3D polar transformation of full gravity potential gradient vectors is based on the geometric properties of the crossing points of complete gradient of the potential to localize the source region that causes the observed anomaly. The cross-points—poles—are defined for rectangular polygons of different sizes where the full gradient vector is defined at every vertex. The polygon size range could be specified. The set of poles, positive and negative, is then represented on the 3D chart in the form of clusters of dots or cubes and can be considered as a model image of the sources, intended for visual analysis and further interpretation.展开更多
Full tensor magnetic gradient measurements are available nowadays. These are essential for determining magnetization parameters in deep layers. Using full or partial tensor magnetic gradient measurements to determine ...Full tensor magnetic gradient measurements are available nowadays. These are essential for determining magnetization parameters in deep layers. Using full or partial tensor magnetic gradient measurements to determine the subsurface properties, e.g., magnetic susceptibility, is an inverse problem. Inversion using total magnetic intensity data is a traditional way.Because of di culty in obtaining the practical full tensor magnetic gradient data, the corresponding inversion results are not so widely reported. With the development of superconducting quantum interference devices(SQUIDs), we can acquire the full tensor magnetic gradient data through field measurements. In this paper, we study the inverse problem of retrieving magnetic susceptibility with the field data using our designed low-temperature SQUIDs. The solving methodology based on sparse regularization and an alternating directions method of multipliers is established. Numerical and field data experiments are performed to show the feasibility of our algorithm.展开更多
Perceptual image quality assessment(IQA)is one of the most indispensable yet challenging problems in image processing and computer vision.It is quite necessary to develop automatic and efficient approaches that can ac...Perceptual image quality assessment(IQA)is one of the most indispensable yet challenging problems in image processing and computer vision.It is quite necessary to develop automatic and efficient approaches that can accurately predict perceptual image quality consistently with human subjective evaluation.To further improve the prediction accuracy for the distortion of color images,in this paper,we propose a novel effective and efficient IQA model,called perceptual gradient similarity deviation(PGSD).Based on the gradient magnitude similarity,we proposed a gradient direction selection method to automatically determine the pixel-wise perceptual gradient.The luminance and chrominance channels are both took into account to characterize the quality degradation caused by intensity and color distortions.Finally,a multi-scale strategy is utilized and pooled with different weights to incorporate image details at different resolutions.Experimental results on LIVE,CSIQ and TID2013 databases demonstrate the superior performances of the proposed algorithm.展开更多
Motion estimation is an important part of the MPEG- 4 encoder, due to its significant impact on the bit rate and the output quality of the encoder sequence. Unfortunately this feature takes a significant part of the e...Motion estimation is an important part of the MPEG- 4 encoder, due to its significant impact on the bit rate and the output quality of the encoder sequence. Unfortunately this feature takes a significant part of the encoding time especially when the straightforward full search(FS) algorithm is used. In this paper, a new algorithm named diamond block based gradient descent search (DBBGDS) algorithm, which is significantly faster than FS and gives similar quality of the output sequence, is proposed. At the same time, some other algorithms, such as three step search (TSS), improved three step search (ITSS), new three step search (NTSS), four step search (4SS), cellular search (CS) , diamond search (DS) and block based gradient descent search (BBGDS), are adopted and compared with DBBGDS. As the experimental results show, DBBGDS has its own advantages. Although DS has been adopted by the MPEG- 4 VM, its output sequence quality is worse than that of the proposed algorithm while its complexity is similar to the proposed one. Compared with BBGDS, the proposed algorithm can achieve a better output quality.展开更多
Numerous geophysical studies have revealed the lithospheric structure of the Qiangtang and the Songpan-Ganzi terranes in the eastern Tibetan Plateau.However,crust-mantle evolution and crustal response to the Indian li...Numerous geophysical studies have revealed the lithospheric structure of the Qiangtang and the Songpan-Ganzi terranes in the eastern Tibetan Plateau.However,crust-mantle evolution and crustal response to the Indian lithospheric subduction are still controversial.Answering these questions requires additional information regarding crustal structure.In this study,the 2-D normalized full gradient(NFG)of the Bouguer gravity anomaly was used to investigate anomalous sources and interpret the crustal structure underneath the Qiangtang and Songpan-Ganzi terranes.The NFG-derived structures with loworder harmonic numbers(N=33 and N=43)showed that an anomalous source beneath the southern Qiangtang terrane had a characteristic northeastward-dipping shape,suggesting the northeastward motion of the crustal material induced by underthrusting Indian lithospheric mantle.The NFG images with harmonic number N=53 showed a large-scale anomalous source in the lower crust of the transformational zone from the Qiangtang terrane to the Songpan-Ganzi terrane,consistent with thickening crust and resistance of lower crustal flow.The anomalous source demonstrated by the NFG results with harmonic number N=71,located in the upper crust underneath the Ganzi-Yushu fault,suggested a seismogenic body of the 2010 M6.9 Yushu event.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41504106&41274099)the Science Foundation of China University of Petroleum(Beijing)(Grant No.2462015YJRC012)State Laboratory of Petroleum Resource and Prospecting(Grant No.PRP/indep-3-1508)
文摘Because of the combination of optimization algorithms and full wave equations, full-waveform inversion(FWI) has become the frontier of the study of seismic exploration and is gradually becoming one of the essential tools for obtaining the Earth interior information. However, the application of conventional FWI to pure reflection data in the absence of a highly accurate starting velocity model is difficult. Compared to other types of seismic waves, reflections carry the information of the deep part of the subsurface. Reflection FWI, therefore, is able to improve the accuracy of imaging the Earth interior further. Here, we demonstrate a means of achieving this successfully by interleaving least-squares RTM with a version of reflection FWI in which the tomographic gradient that is required to update the background macro-model is separated from the reflectivity gradient using the Born approximation during forward modeling. This provides a good update to the macro-model. This approach is then followed by conventional FWI to obtain a final high-fidelity high-resolution result from a poor starting model using only reflection data.Further analysis reveals the high-resolution result is achieved due to a deconvolution imaging condition implicitly used by FWI.
基金supported by the National Hi-tech Research and Development Program of China(863Program)(No.2007AA09Z310) National Natural Science Foundation of China(Grant No.40774029 40374024)+1 种基金 the Fundamental Research Funds for the Central Universities(Grant No.2010ZY53) the Program for New Century Excellent Talents in University(NCET)
文摘Based on the analysis of impedance tensor data, tipper data, and the conjugate gradient algorithm, we develop a three-dimensional (3D) conjugate gradient algorithm for inverting magnetotelluric full information data determined from five electric and magnetic field components and discuss the method to use the full information data for quantitative interpretation of 3D inversion results. Results from the 3D inversion of synthetic data indicate that the results from inverting full information data which combine the impedance tensor and tipper data are better than results from inverting only the impedance tensor data (or tipper data) in improving resolution and reliability. The synthetic examples also demonstrate the validity and stability of this 3D inversion algorithm.
基金the Sub-project of National Science and Technology Major Project of China(No.2016ZX05027-002-003)the National Natural Science Foundation of China(No.41404089)+1 种基金the State Key Program of National Natural Science of China(No.41430322)the National Basic Research Program of China(973 Program)(No.2015CB45300)
文摘With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processing and interpretation of large-scale high-precision data, the use of the graphics processing unit process unit (GPU) and preconditioning methods are very important in the data inversion. In this paper, an improved preconditioned conjugate gradient algorithm is proposed by combining the symmetric successive over-relaxation (SSOR) technique and the incomplete Choleksy decomposition conjugate gradient algorithm (ICCG). Since preparing the preconditioner requires extra time, a parallel implement based on GPU is proposed. The improved method is then applied in the inversion of noise- contaminated synthetic data to prove its adaptability in the inversion of 3D FTG data. Results show that the parallel SSOR-ICCG algorithm based on NVIDIA Tesla C2050 GPU achieves a speedup of approximately 25 times that of a serial program using a 2.0 GHz Central Processing Unit (CPU). Real airbome gravity-gradiometry data from Vinton salt dome (south- west Louisiana, USA) are also considered. Good results are obtained, which verifies the efficiency and feasibility of the proposed parallel method in fast inversion of 3D FTG data.
基金financially supported by the Natural Science Foundation of Shandong Province(ZR2022QB166,ZR2020KE032)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010600)+3 种基金the Youth Innovation Promotion Association of CAS(2021210)the Foundation of Qingdao Postdoctoral Application Program(Y63302190F)the Natural Science Foundation of Qingdao Institute ofBioenergy and Bioprocess Technology(QIBEBT SZ202101)support from the Max Planck-POSTECH-Hsinchu Center for Complex Phase Materials
文摘Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rate performance,whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance.Herein,a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process.It realizes not only a stable Li_(2)TiO_(3)coating layer with 3D diffusion channels for fast Li^(+)ions transfer,but also dopes partial Ti^(4+)ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure.Consequently,the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability,elevated thermal stability with decomposition temperature from 289.57℃to 321.72℃,and enhanced cycle performance(205.1 mAh g^(-1)after 150 cycles)with slowed voltage drop(1.67 mV per cycle).This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides,which can facilitate its practical application for developing higher energy density lithium-ion batteries.
基金supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA063901 and No.2006AA06A201)
文摘The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mapping, resources exploration, magnetic navigation, and others. However, it is very difficult to measure the full magnetic tensor gradient using existing engineering technology. We present a method to use triaxial aeromagnetic gradient measurements for deriving the full MGT. The method uses the triaxial gradient data and makes full use of the variation of the magnetic anomaly modulus in three dimensions to obtain a self-consistent magnetic tensor gradient. Numerical simulations show that the full MGT data obtained with the proposed method are of high precision and satisfy the requirements of data processing. We selected triaxial aeromagnetic gradient data from the Hebei Province for calculating the full MGT. Data processing shows that using triaxial tensor gradient data allows to take advantage of the spatial rate of change of the total field in three dimensions and suppresses part of the independent noise in the aeromagnetic gradient. The calculated tensor components have improved resolution, and the transformed full tensor gradient satisfies the requirement of geological mapping and interpretation.
基金financially supported by the National Natural Science Foundation of China(No.52075072)the Fundamental Research Funds for the Central Universities(No.DUT20JC46)。
文摘A novel solid-liquid interdiffusion(SLID)bonding method with the assistance of temperature gradient(TG)was carried out to bonding Cu and Ni substrates with Sn as interlayer.The element distribution and grain morphology of interfacial intermetallic compound(IMC)in Cu/Sn/Ni micro-joints during both SLID and TG-SLID bonding and in the final Cu/(Cu,Ni)_(6)Sn_(5)/Ni full IMC micro-joints were analyzed.Under the effect of Cu-Ni cross-interaction,interfacial(Cu,Ni)_(6)Sn_(5) dominated the IMC growth at all the interfaces.The morphology of the(Cu,Ni)_(6)Sn_(5) grains was closely related to Ni content with three levels of low,medium and high.The full IMC micro-joints consisted of L-(Cu,Ni)_(6) Sn_(5),M-(Cu,Ni)_(6)Sn_(5) and H-(Cu,Ni)_(6)Sn_(5) grains after SLID bonding or TG-SLID bonding with Ni as hot end,while only L-(Cu,Ni)_(6)Sn_(5) grains after TG-SLID bonding with Cu as hot end,showing that the direction of TG had a remarkably effect on the growth and morphology of the interfacial(Cu,Ni)_(6)Sn_(5) during TG-SLID bonding.Thermodynamic analysis revealed the key molar latent heat and critical Ni content between fine-rounded-like(Cu,Ni)_(6)Sn_(5) and block-like(Cu,Ni)_(6)Sn_(5) were 17,725.4 J and 11.0 at.%at 260℃,respectively.Moreover,the growth kinetic of the interfacial IMC was analyzed in detail during bonding with and without TG.Under the combination of TG and Cu-Ni cross-interaction,void-free full IMC micro-joints were fast formed by TG-SLID bonding with Cu as hot end.This bonding method may present a feasible solution to solve the problems of low formation efficiency and inevitable Cu_(3) Sn growth of full IMC joints for 3 D packaging applications.
基金jointly supported by Young Scientists Cultivation Fund Project of Harbin Engineering University(79000013/003)the Mount Taishan Industrial Leading Talent Project+1 种基金the Great and Special Project under Grant KJGG-2022-0104 of CNOOC Limitedthe National Natural Science Foundation of China(42006064,42106070,42074138)。
文摘The low-wavenumber components in the gradient of full waveform inversion(FWI)play a vital role in the stability of the inversion.However,when FWI is implemented in some high frequencies and current models are not far away from the real velocity model,an excessive number of low-wavenumber components in the gradient will also reduce the convergence rate and inversion accuracy.To solve this problem,this paper firstly derives a formula of scattering angle weighted gradient in FWI,then proposes a hybrid gradient.The hybrid gradient combines the conventional gradient of FWI with the scattering angle weighted gradient in each inversion frequency band based on an empirical formula derived herein.Using weighted hybrid mode,we can retain some low-wavenumber components in the initial lowfrequency inversion to ensure the stability of the inversion,and use more high-wavenumber components in the high-frequency inversion to improve the convergence rate.The results of synthetic data experiment demonstrate that compared to the conventional FWI,the FWI based on the proposed hybrid gradient can effectively reduce the low-wavenumber components in the gradient under the premise of ensuring inversion stability.It also greatly enhances the convergence rate and inversion accuracy,especially in the deep part of the model.And the field marine seismic data experiment also illustrates that the FWI based on hybrid gradient(HGFWI)has good stability and adaptability.
基金Projects(41174061,41374120)supported by the National Natural Science Foundation of China
文摘Geological structures often exhibit smooth characteristics away from sharp discontinuities. One aim of geophysical inversion is to recover information about the smooth structures as well as about the sharp discontinuities. Because no specific operator can provide a perfect sparse representation of complicated geological models, hyper-parameter regularization inversion based on the iterative split Bregman method was used to recover the features of both smooth and sharp geological structures. A novel preconditioned matrix was proposed, which counteracted the natural decay of the sensitivity matrix and its inverse matrix was calculated easily. Application of the algorithm to synthetic data produces density models that are good representations of the designed models. The results show that the algorithm proposed is feasible and effective.
基金supported by the China State Key Science and Technology Project on Marine Carbonate Reservoir Characterization (No. 2011ZX05004-003)the Basic Research Programs of CNPC during the 12th Five-Year Plan Period (NO.2011A-3603)+1 种基金the Natural Science Foundation of China (No.41104066)the RIPED Young Professional Innovation Fund (NO.2010-13-16-02, 2010-A-26-02)
文摘Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based on the optimal steep descent methods, we present an algorithm which combines the preconditioned bi-conjugated gradient stable method and the multi-grid method to compute the wave propagation and the gradient space. The multiple scale prosperity of the waveform inversion and the multi-grid method can overcome the inverse problems local minima defect and accelerate convergence. The local inhomogeneous three-hole model simulated results and the Marmousi model certify the algorithm effectiveness.
文摘全双工系统能实现在同一时隙与同一频率传输数据,相比于半双工系统能大大地提升数据吞吐量和频谱效率。为了进一步提高全双工多输入多输出(Multi-input and multi-output,MIMO)中继系统传输速率,本文基于放大转发(Amplify-and-forward,AF)传输模式,在全双工双向中继系统中引入梯度下降算法,将用户发送端、接收端波束成形与中继端波束成形矩阵相结合设计一种最大化速率的交替迭代算法,并构造出一种最小均方误差(Minimum mean square error,MMSE)迭代算法作为初始条件,在此基础上推导出中继接收端与发射端的波束成形矩阵表达式。仿真结果表明,本文构造的交替迭代算法收敛速度快,而且相比于迫零、最小均方误差以及最大泄信噪比算法,和速率有显著提高。
文摘The method of 3D polar transformation of full gravity potential gradient vectors is based on the geometric properties of the crossing points of complete gradient of the potential to localize the source region that causes the observed anomaly. The cross-points—poles—are defined for rectangular polygons of different sizes where the full gradient vector is defined at every vertex. The polygon size range could be specified. The set of poles, positive and negative, is then represented on the 3D chart in the form of clusters of dots or cubes and can be considered as a model image of the sources, intended for visual analysis and further interpretation.
基金supported by National Natural Science Foundation of China(Grant Nos.91630202,41611530693&1181101259)R&D of Key Instruments and Technologies for Deep Resources Prospecting(Grant No.ZDYZ2012-1-02-04)+1 种基金National Key R&D Program(Grant No.2018YFC0603500)Russian Foundation for Basic Research(Grant No.17-51-53002)
文摘Full tensor magnetic gradient measurements are available nowadays. These are essential for determining magnetization parameters in deep layers. Using full or partial tensor magnetic gradient measurements to determine the subsurface properties, e.g., magnetic susceptibility, is an inverse problem. Inversion using total magnetic intensity data is a traditional way.Because of di culty in obtaining the practical full tensor magnetic gradient data, the corresponding inversion results are not so widely reported. With the development of superconducting quantum interference devices(SQUIDs), we can acquire the full tensor magnetic gradient data through field measurements. In this paper, we study the inverse problem of retrieving magnetic susceptibility with the field data using our designed low-temperature SQUIDs. The solving methodology based on sparse regularization and an alternating directions method of multipliers is established. Numerical and field data experiments are performed to show the feasibility of our algorithm.
文摘Perceptual image quality assessment(IQA)is one of the most indispensable yet challenging problems in image processing and computer vision.It is quite necessary to develop automatic and efficient approaches that can accurately predict perceptual image quality consistently with human subjective evaluation.To further improve the prediction accuracy for the distortion of color images,in this paper,we propose a novel effective and efficient IQA model,called perceptual gradient similarity deviation(PGSD).Based on the gradient magnitude similarity,we proposed a gradient direction selection method to automatically determine the pixel-wise perceptual gradient.The luminance and chrominance channels are both took into account to characterize the quality degradation caused by intensity and color distortions.Finally,a multi-scale strategy is utilized and pooled with different weights to incorporate image details at different resolutions.Experimental results on LIVE,CSIQ and TID2013 databases demonstrate the superior performances of the proposed algorithm.
文摘Motion estimation is an important part of the MPEG- 4 encoder, due to its significant impact on the bit rate and the output quality of the encoder sequence. Unfortunately this feature takes a significant part of the encoding time especially when the straightforward full search(FS) algorithm is used. In this paper, a new algorithm named diamond block based gradient descent search (DBBGDS) algorithm, which is significantly faster than FS and gives similar quality of the output sequence, is proposed. At the same time, some other algorithms, such as three step search (TSS), improved three step search (ITSS), new three step search (NTSS), four step search (4SS), cellular search (CS) , diamond search (DS) and block based gradient descent search (BBGDS), are adopted and compared with DBBGDS. As the experimental results show, DBBGDS has its own advantages. Although DS has been adopted by the MPEG- 4 VM, its output sequence quality is worse than that of the proposed algorithm while its complexity is similar to the proposed one. Compared with BBGDS, the proposed algorithm can achieve a better output quality.
基金financially supported by the National Natural Science Foundation of China(Grant No.42074090)
文摘Numerous geophysical studies have revealed the lithospheric structure of the Qiangtang and the Songpan-Ganzi terranes in the eastern Tibetan Plateau.However,crust-mantle evolution and crustal response to the Indian lithospheric subduction are still controversial.Answering these questions requires additional information regarding crustal structure.In this study,the 2-D normalized full gradient(NFG)of the Bouguer gravity anomaly was used to investigate anomalous sources and interpret the crustal structure underneath the Qiangtang and Songpan-Ganzi terranes.The NFG-derived structures with loworder harmonic numbers(N=33 and N=43)showed that an anomalous source beneath the southern Qiangtang terrane had a characteristic northeastward-dipping shape,suggesting the northeastward motion of the crustal material induced by underthrusting Indian lithospheric mantle.The NFG images with harmonic number N=53 showed a large-scale anomalous source in the lower crust of the transformational zone from the Qiangtang terrane to the Songpan-Ganzi terrane,consistent with thickening crust and resistance of lower crustal flow.The anomalous source demonstrated by the NFG results with harmonic number N=71,located in the upper crust underneath the Ganzi-Yushu fault,suggested a seismogenic body of the 2010 M6.9 Yushu event.