The AZ31 Mg alloys were processed by 6% pre-compression and frustum shearing extrusion at various temperatures, and the microstructure, texture and mechanical properties of the resulting alloys are systematically inve...The AZ31 Mg alloys were processed by 6% pre-compression and frustum shearing extrusion at various temperatures, and the microstructure, texture and mechanical properties of the resulting alloys are systematically investigated. The results show that the grain size monotonically increases from 6.4 to 12.6 lm and the texture intensity increases from 6.7 to 9.6with the increase in the extrusion temperature. The combining effect of the pre-twinning and the frustum shearing deformation is found to contribute to the development of the weak basal texture in Mg alloys. The Mg alloy sheet produced at the extrusion temperature of 563 K exhibits excellent mechanical properties. The yield strength, ultimate tensile strength and elongation for the extruded alloys are 189.6 MPa, 288.4 MPa and 24.9%, respectively. Such improved mechanical properties are comparable or even superior to those of the alloys subjected to other deformation techniques, rendering the pre-compression and frustum shearing extrusion a promising way for further tailoring properties of Mg alloys.展开更多
基金partly supported by the National Natural Science Foundation of China(Grant Nos.51505143 and51704112)the Scientific Research Fund of Hunan Provincial Education Department(Grant No.17B089)the financial supports from the China Postdoctoral Science Foundation(Grant No.2016T90759)
文摘The AZ31 Mg alloys were processed by 6% pre-compression and frustum shearing extrusion at various temperatures, and the microstructure, texture and mechanical properties of the resulting alloys are systematically investigated. The results show that the grain size monotonically increases from 6.4 to 12.6 lm and the texture intensity increases from 6.7 to 9.6with the increase in the extrusion temperature. The combining effect of the pre-twinning and the frustum shearing deformation is found to contribute to the development of the weak basal texture in Mg alloys. The Mg alloy sheet produced at the extrusion temperature of 563 K exhibits excellent mechanical properties. The yield strength, ultimate tensile strength and elongation for the extruded alloys are 189.6 MPa, 288.4 MPa and 24.9%, respectively. Such improved mechanical properties are comparable or even superior to those of the alloys subjected to other deformation techniques, rendering the pre-compression and frustum shearing extrusion a promising way for further tailoring properties of Mg alloys.