High temperature(HT)during grain filling is one of the most important environmental factors limiting maize yield and grain quality.Nitrogen(N)fertilizer is essential for maintaining normal plant growth and defense aga...High temperature(HT)during grain filling is one of the most important environmental factors limiting maize yield and grain quality.Nitrogen(N)fertilizer is essential for maintaining normal plant growth and defense against environmental stresses.The effects of three N rates and two temperature regimes on the grain yield and quality of fresh waxy maize were studied using the hybrids Suyunuo 5(SYN5)and Yunuo 7(YN7)as materials.N application rates were 1.5,4.5,and 7.5 g plant-1,representing low,moderate,and high N levels(LN,MN,and HN,respectively).Mean day/night temperatures during the grain filling of spring-and summer-sown plants were 27.6/21.0°C and 28.6/20.0°C for ambient temperature(AT)and 35/21.0°C and 35/20.0°C for HT,respectively.On average,HT reduced kernel number,weight,yield,and moisture content by 29.8%,17.9%,38.7%,and 3.3%,respectively.Kernel number,weight,yield,moisture,and starch contents were highest under MN among the three N rates under both temperature regimes.HT reduced grain starch content at all N levels.HT increased grain protein content,which gradually increased with N rate.Mean starch granule size under MN was larger(10.9μm)than that under LN and HN(both 10.4μm)at AT.However,the mean size of starch granules was higher under LN(11.7μm)and lower under MN(11.2μm)at HT.Iodine binding capacity(IBC)was lowest under MN and highest under HN among the three N levels under both temperature regimes.In general,IBC at all N rates was increased by HT.Peak viscosity(PV)was gradually reduced with increasing N rate at AT.In comparison with LN,PV was increased by MN and decreased by HN at HT.Retrogradation percentage gradually increased with N rate at AT,but was lowest under MN among the three N rates at HT.LN+AT and MN+HT produced grain with high pasting viscosity and low retrogradation tendency.MN application could alleviate the negative effects of HT on the grain yield and quality of fresh waxy maize.展开更多
Grain physicochemical properties determine the table quality of fresh waxy maize. Two waxy maize varieties, Suyunuo 5 (shading tolerant) and FHN003 (shading sensitive), were used to estimate the effect of shading ...Grain physicochemical properties determine the table quality of fresh waxy maize. Two waxy maize varieties, Suyunuo 5 (shading tolerant) and FHN003 (shading sensitive), were used to estimate the effect of shading (plants received 30% less radiation than control) during grain filling (from 0 d to 23 d after pollination) on physicochemical properties of fresh waxy maize grain. Shading decreased the grain fresh weight of Suyunuo 5 and FHN003 by 8.4 and 19.1%, respectively. Shading increased the grain water content of FHN003, whereas that of Suyunuo 5 was not affected. In both varieties for shading treatment, soluble sugar, starch and protein contents were decreased, whereas zein content was increased. The changes in globulin, albumin and glutenin contents under shading were variety dependent. In both varieties, shading decreased λmax, iodine binding capacity and the percentage of large starch granules (diameter 〉17 μm) but increased crystallinity. The results of rapid visco analysis showed that the viscosity characteristics (except for pasting temperature) of both varieties were decreased by shading; however, FHN003 was more severely affected than Suyunuo 5. Under shading, Antet and %R were decreased in both varieties, whereas the changes in △Hgol and transition temperatures were variety dependent. Hardness, cohesiveness and chewiness were decreased in both varieties. Significant differences in physicochemical characteristics were observed between the two varieties.展开更多
基金supported by the National Key Research and Development Program of China(2016YFD0300109,2018YFD0200703)the National Natural Science Foundation of China(31771709)+2 种基金Jiangsu Agriculture Science and Technology Innovation Fund(CX[19]3056)the Priority Academic Program Development of Jiangsu Higher Education InstitutionsHigh-end Talent Support Program of Yangzhou University。
文摘High temperature(HT)during grain filling is one of the most important environmental factors limiting maize yield and grain quality.Nitrogen(N)fertilizer is essential for maintaining normal plant growth and defense against environmental stresses.The effects of three N rates and two temperature regimes on the grain yield and quality of fresh waxy maize were studied using the hybrids Suyunuo 5(SYN5)and Yunuo 7(YN7)as materials.N application rates were 1.5,4.5,and 7.5 g plant-1,representing low,moderate,and high N levels(LN,MN,and HN,respectively).Mean day/night temperatures during the grain filling of spring-and summer-sown plants were 27.6/21.0°C and 28.6/20.0°C for ambient temperature(AT)and 35/21.0°C and 35/20.0°C for HT,respectively.On average,HT reduced kernel number,weight,yield,and moisture content by 29.8%,17.9%,38.7%,and 3.3%,respectively.Kernel number,weight,yield,moisture,and starch contents were highest under MN among the three N rates under both temperature regimes.HT reduced grain starch content at all N levels.HT increased grain protein content,which gradually increased with N rate.Mean starch granule size under MN was larger(10.9μm)than that under LN and HN(both 10.4μm)at AT.However,the mean size of starch granules was higher under LN(11.7μm)and lower under MN(11.2μm)at HT.Iodine binding capacity(IBC)was lowest under MN and highest under HN among the three N levels under both temperature regimes.In general,IBC at all N rates was increased by HT.Peak viscosity(PV)was gradually reduced with increasing N rate at AT.In comparison with LN,PV was increased by MN and decreased by HN at HT.Retrogradation percentage gradually increased with N rate at AT,but was lowest under MN among the three N rates at HT.LN+AT and MN+HT produced grain with high pasting viscosity and low retrogradation tendency.MN application could alleviate the negative effects of HT on the grain yield and quality of fresh waxy maize.
基金supported by the National Natural Science Foundation of China (30971731,31000684 and 31271640)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Grain physicochemical properties determine the table quality of fresh waxy maize. Two waxy maize varieties, Suyunuo 5 (shading tolerant) and FHN003 (shading sensitive), were used to estimate the effect of shading (plants received 30% less radiation than control) during grain filling (from 0 d to 23 d after pollination) on physicochemical properties of fresh waxy maize grain. Shading decreased the grain fresh weight of Suyunuo 5 and FHN003 by 8.4 and 19.1%, respectively. Shading increased the grain water content of FHN003, whereas that of Suyunuo 5 was not affected. In both varieties for shading treatment, soluble sugar, starch and protein contents were decreased, whereas zein content was increased. The changes in globulin, albumin and glutenin contents under shading were variety dependent. In both varieties, shading decreased λmax, iodine binding capacity and the percentage of large starch granules (diameter 〉17 μm) but increased crystallinity. The results of rapid visco analysis showed that the viscosity characteristics (except for pasting temperature) of both varieties were decreased by shading; however, FHN003 was more severely affected than Suyunuo 5. Under shading, Antet and %R were decreased in both varieties, whereas the changes in △Hgol and transition temperatures were variety dependent. Hardness, cohesiveness and chewiness were decreased in both varieties. Significant differences in physicochemical characteristics were observed between the two varieties.