A full-span free-wake method is coupled with an unsteady panel method to accurately predict the unsteady aerodynamics of helicopter rotor blades in hover and forward flight. The unsteady potential-based panel method i...A full-span free-wake method is coupled with an unsteady panel method to accurately predict the unsteady aerodynamics of helicopter rotor blades in hover and forward flight. The unsteady potential-based panel method is used to consider aerodynamics of finite thickness multi-bladed rotors, and the full-span free-wake method is applied to simulating dynamics of rotor wake. These methods are tightly coupled through trailing-edge Kutta condition and by converting doublet-wake panels to full-span vortex filaments. A velocity-field integration technique is also adopted to overcome singularity problem during the interaction between the rotor wake and blades. Helicopter rotors including Caradonna–Tung, UH-60A, and AH-1G rotors, are simulated in hover and forward flight to validate the accuracy of this approach. The predicted aerodynamic loads of rotor blades agree well with available measured data and computational fluid dynamics (CFD) results, and the unsteady dynamics of rotor wake is also well simulated. Compared to CFD, the present method obtains accurate results more efficiently and is suitable to rotorcraft aeroelastic analysis.展开更多
To investigate the distinct properties of the helicopter rotors during circling flight,the aerodynamic and dynamic models for the main rotor are established considering the trim conditions and the flight parameters of...To investigate the distinct properties of the helicopter rotors during circling flight,the aerodynamic and dynamic models for the main rotor are established considering the trim conditions and the flight parameters of helicopters.The free wake method is introduced to compute the unsteady aerodynamic loads of the rotor characterized by distortions of rotor wakes,and the modal superposition method is used to predict the overall structural loads of the rotor.The effectiveness of the aerodynamic and the structural methods is verified by comparison with the experimental results,whereby the influences of circling direction,radius,and velocity are evaluated in both aerodynamic and dynamic aspects.The results demonstrate that the circling condition makes a great difference to the performance of rotor vortex,as well as the unsteady aerodynamic loads.With the decrease of the circling radius or the increment of the circling velocity,the thrust of the main rotor increases apparently to balance the inertial force.Meanwhile,the harmonics of aerodynamic loads in rotor disc change severely and an evident aerodynamic load shock appears at high-order components,which further causes a shift-of-peak-phase bending moment in the flap dimension.Moreover,the advancing side of blade experiences second blade/vortex interaction,whose intensity has a distinct enhancement as the circling radius decreases with the motion of vortexes.展开更多
Applications of a novel curve-fitting technique are presented to efficiently predict the motion of the vortex filament, which is trailed from a rigid body such as wings and rotors. The gov- erning equations of the mot...Applications of a novel curve-fitting technique are presented to efficiently predict the motion of the vortex filament, which is trailed from a rigid body such as wings and rotors. The gov- erning equations of the motion, when a Lagrangian approach with the present curve-fitting method is applied, can be transformed into an easily solvable form of the system of nonlinear ordinary dif- ferential equations. The applicability of Bezier curves, B-spline, and Lagrange interpolating polyno- mials is investigated. Local Lagrange interpolating polynomials with a shift operator are proposed as the best selection for applications, since it provides superior system characteristics with minimum computing time, compared to other methods. In addition, the Gauss quadrature formula with local refinement strategy has been developed for an accurate prediction of the induced velocity computed with the line integration of the Biot-Savart law. Rotary-wing problems including a vortex ring problem are analyzed to show the efficiency, accuracy, and flexibility in the applications of the pro- posed method.展开更多
A coupled Navier-Stokes/free-wake method is developed to predict the rotor aerodynamics and wake.The widely-used Farassat 1 Aformulation is adopted to predict the rotor noise.In the coupled method,the Reynolds-average...A coupled Navier-Stokes/free-wake method is developed to predict the rotor aerodynamics and wake.The widely-used Farassat 1 Aformulation is adopted to predict the rotor noise.In the coupled method,the Reynolds-averaged Navier-Stokes(RANS)solver is established to simulate complex aerodynamic phenomena around blade and the tip-wake is captured by a free-wake model without numerical dissipation in the off-body wake zone.To overcome the time-consuming of the coupling strategy in previous studies,a more efficient coupling strategy is presented,by which only the induced velocity on the outer boundary grid need to be calculated.In order to obtain blade control settings,a delta trimming procedure is developed,which is more efficient than traditional trim method in the calculation of Jacobian matrix.Several flight conditions are simulated to demonstrate the validity of the coupled method.Then the rotor noise of operational load survey(OLS)is studied by the developed method as an application and the computational results are shown to be in good agreements with the available experimental data.展开更多
文摘A full-span free-wake method is coupled with an unsteady panel method to accurately predict the unsteady aerodynamics of helicopter rotor blades in hover and forward flight. The unsteady potential-based panel method is used to consider aerodynamics of finite thickness multi-bladed rotors, and the full-span free-wake method is applied to simulating dynamics of rotor wake. These methods are tightly coupled through trailing-edge Kutta condition and by converting doublet-wake panels to full-span vortex filaments. A velocity-field integration technique is also adopted to overcome singularity problem during the interaction between the rotor wake and blades. Helicopter rotors including Caradonna–Tung, UH-60A, and AH-1G rotors, are simulated in hover and forward flight to validate the accuracy of this approach. The predicted aerodynamic loads of rotor blades agree well with available measured data and computational fluid dynamics (CFD) results, and the unsteady dynamics of rotor wake is also well simulated. Compared to CFD, the present method obtains accurate results more efficiently and is suitable to rotorcraft aeroelastic analysis.
基金supported by the National Natural Science Foundation of China(Nos.12102186,12032012)the Natural Science Foundation of Jiangsu Province,China(No.BK20200433)+2 种基金the Laboratory Foundation of China(No.61422202201)the Young Elite Scientists Sponsorship Program by CAST,China(No.2022QNRC001)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China。
文摘To investigate the distinct properties of the helicopter rotors during circling flight,the aerodynamic and dynamic models for the main rotor are established considering the trim conditions and the flight parameters of helicopters.The free wake method is introduced to compute the unsteady aerodynamic loads of the rotor characterized by distortions of rotor wakes,and the modal superposition method is used to predict the overall structural loads of the rotor.The effectiveness of the aerodynamic and the structural methods is verified by comparison with the experimental results,whereby the influences of circling direction,radius,and velocity are evaluated in both aerodynamic and dynamic aspects.The results demonstrate that the circling condition makes a great difference to the performance of rotor vortex,as well as the unsteady aerodynamic loads.With the decrease of the circling radius or the increment of the circling velocity,the thrust of the main rotor increases apparently to balance the inertial force.Meanwhile,the harmonics of aerodynamic loads in rotor disc change severely and an evident aerodynamic load shock appears at high-order components,which further causes a shift-of-peak-phase bending moment in the flap dimension.Moreover,the advancing side of blade experiences second blade/vortex interaction,whose intensity has a distinct enhancement as the circling radius decreases with the motion of vortexes.
基金supported by the EDISON Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning(No.2011-0020560)
文摘Applications of a novel curve-fitting technique are presented to efficiently predict the motion of the vortex filament, which is trailed from a rigid body such as wings and rotors. The gov- erning equations of the motion, when a Lagrangian approach with the present curve-fitting method is applied, can be transformed into an easily solvable form of the system of nonlinear ordinary dif- ferential equations. The applicability of Bezier curves, B-spline, and Lagrange interpolating polyno- mials is investigated. Local Lagrange interpolating polynomials with a shift operator are proposed as the best selection for applications, since it provides superior system characteristics with minimum computing time, compared to other methods. In addition, the Gauss quadrature formula with local refinement strategy has been developed for an accurate prediction of the induced velocity computed with the line integration of the Biot-Savart law. Rotary-wing problems including a vortex ring problem are analyzed to show the efficiency, accuracy, and flexibility in the applications of the pro- posed method.
文摘A coupled Navier-Stokes/free-wake method is developed to predict the rotor aerodynamics and wake.The widely-used Farassat 1 Aformulation is adopted to predict the rotor noise.In the coupled method,the Reynolds-averaged Navier-Stokes(RANS)solver is established to simulate complex aerodynamic phenomena around blade and the tip-wake is captured by a free-wake model without numerical dissipation in the off-body wake zone.To overcome the time-consuming of the coupling strategy in previous studies,a more efficient coupling strategy is presented,by which only the induced velocity on the outer boundary grid need to be calculated.In order to obtain blade control settings,a delta trimming procedure is developed,which is more efficient than traditional trim method in the calculation of Jacobian matrix.Several flight conditions are simulated to demonstrate the validity of the coupled method.Then the rotor noise of operational load survey(OLS)is studied by the developed method as an application and the computational results are shown to be in good agreements with the available experimental data.