Phosphorus bioavailability has long been a recurring problem in tropical acid soils. A pot experiment was carried out during three (3) successive rice production cycles at Adiopodoumé to evaluate the response of ...Phosphorus bioavailability has long been a recurring problem in tropical acid soils. A pot experiment was carried out during three (3) successive rice production cycles at Adiopodoumé to evaluate the response of the NERICA 5 rice accession to various doses of calcium, magnesium and phosphorous. The experiment was conducted using a randomized split-plot design. The interactive effects of calcium carbonate (0, 25, 50 and 75 kg·Ca·ha<sup>-1</sup>) and magnesium sulfate (0, 25, 50 and 75 kg·Mg·ha<sup>-1</sup>) and Togo natural phosphate (0, 25, 50 and 75 kg·P·ha<sup>-1</sup>) were determined at each production cycle. The results showed that single-dose natural phosphate supplementation for three cropping cycles resulted in an average enrichment of around 2 mg·P·kg<sup>-1</sup> after each trial following its continuous dissolution, with an increase in DSP (33.31% to 70.52%). The study revealed one strategy for managing and enhancing native P with cations and another for exogenous P: there would be a synergy of Ca/Mg on native P, whereas an antagonism would characterize the two parameters in phosphate fertilization.展开更多
文摘Phosphorus bioavailability has long been a recurring problem in tropical acid soils. A pot experiment was carried out during three (3) successive rice production cycles at Adiopodoumé to evaluate the response of the NERICA 5 rice accession to various doses of calcium, magnesium and phosphorous. The experiment was conducted using a randomized split-plot design. The interactive effects of calcium carbonate (0, 25, 50 and 75 kg·Ca·ha<sup>-1</sup>) and magnesium sulfate (0, 25, 50 and 75 kg·Mg·ha<sup>-1</sup>) and Togo natural phosphate (0, 25, 50 and 75 kg·P·ha<sup>-1</sup>) were determined at each production cycle. The results showed that single-dose natural phosphate supplementation for three cropping cycles resulted in an average enrichment of around 2 mg·P·kg<sup>-1</sup> after each trial following its continuous dissolution, with an increase in DSP (33.31% to 70.52%). The study revealed one strategy for managing and enhancing native P with cations and another for exogenous P: there would be a synergy of Ca/Mg on native P, whereas an antagonism would characterize the two parameters in phosphate fertilization.