The behavior of N-methylidenemalonates of 3-arylaminoindoles and p-dimetylamino-N-phenylanyline (M = ANa) was studied during their analysis with ESI mass spectrometer operated in negative (NI) and positive (PI) ion mo...The behavior of N-methylidenemalonates of 3-arylaminoindoles and p-dimetylamino-N-phenylanyline (M = ANa) was studied during their analysis with ESI mass spectrometer operated in negative (NI) and positive (PI) ion modes. Anions [A] and both [M + H]+ and [M + Na]+ were recorded under conditions of the NI-ESI and PI-ESI, respectively. The fragmentation processes of [A] and [M + H]+ were found that probably occurred as “insource collusion induced dissociation”. The main paths for [A] proved to be elimination of CO2 and breakage of the N-methylidenemalonate bond. A route [A]- - CO2 - ROH (R = Me or Et) was less expressed and occurred for the indolyl-containing compounds with the NH bond only. Experiments employing heavy water demonstrated the isotope exchange to occur involving the hydrogen atom of this bond. This and other facts evidenced that the last fragmentation included abstraction of just this atom. Quantum-chemical calculations allowed picking out a structure for the product ion from the possible ones. The calculations also indicated that the protonation of M occurred at the anionic oxygen atom of the malonate moiety. The fragmentation of [M + H]+ ions included elimination of two water molecules that was supported by their MS2 spectra. A common feature of the NI- and PI-ESI mass spectra was the presence of oligomeric ions, up to tetramers and trimers for the NI- and PI-ESI ones, respectively. The oligomers were formed by interaction of the corresponding ions with neutral molecules. When ions contained extra hydrogen atoms, they were introduced by hydrolysis.展开更多
文摘The behavior of N-methylidenemalonates of 3-arylaminoindoles and p-dimetylamino-N-phenylanyline (M = ANa) was studied during their analysis with ESI mass spectrometer operated in negative (NI) and positive (PI) ion modes. Anions [A] and both [M + H]+ and [M + Na]+ were recorded under conditions of the NI-ESI and PI-ESI, respectively. The fragmentation processes of [A] and [M + H]+ were found that probably occurred as “insource collusion induced dissociation”. The main paths for [A] proved to be elimination of CO2 and breakage of the N-methylidenemalonate bond. A route [A]- - CO2 - ROH (R = Me or Et) was less expressed and occurred for the indolyl-containing compounds with the NH bond only. Experiments employing heavy water demonstrated the isotope exchange to occur involving the hydrogen atom of this bond. This and other facts evidenced that the last fragmentation included abstraction of just this atom. Quantum-chemical calculations allowed picking out a structure for the product ion from the possible ones. The calculations also indicated that the protonation of M occurred at the anionic oxygen atom of the malonate moiety. The fragmentation of [M + H]+ ions included elimination of two water molecules that was supported by their MS2 spectra. A common feature of the NI- and PI-ESI mass spectra was the presence of oligomeric ions, up to tetramers and trimers for the NI- and PI-ESI ones, respectively. The oligomers were formed by interaction of the corresponding ions with neutral molecules. When ions contained extra hydrogen atoms, they were introduced by hydrolysis.