Drug discovery is a crucial part of human healthcare and has dramatically benefited human lifespan and life quality in recent centuries, however, it is usually time-and effort-consuming. Structural biology has been de...Drug discovery is a crucial part of human healthcare and has dramatically benefited human lifespan and life quality in recent centuries, however, it is usually time-and effort-consuming. Structural biology has been demonstrated as a powerful tool to accelerate drug development. Among different techniques, cryo-electron microscopy(cryo-EM) is emerging as the mainstream of structure determination of biomacromolecules in the past decade and has received increasing attention from the pharmaceutical industry. Although cryo-EM still has limitations in resolution, speed and throughput, a growing number of innovative drugs are being developed with the help of cryo-EM. Here, we aim to provide an overview of how cryo-EM techniques are applied to facilitate drug discovery. The development and typical workflow of cryo-EM technique will be briefly introduced, followed by its specific applications in structure-based drug design, fragment-based drug discovery, proteolysis targeting chimeras, antibody drug development and drug repurposing. Besides cryo-EM, drug discovery innovation usually involves other state-of-the-art techniques such as artificial intelligence(AI), which is increasingly active in diverse areas. The combination of cryo-EM and AI provides an opportunity to minimize limitations of cryo-EM such as automation, throughput and interpretation of mediumresolution maps, and tends to be the new direction of future development of cryo-EM. The rapid development of cryo-EM will make it as an indispensable part of modern drug discovery.展开更多
Human immunodeficiency virus(HIV)is the primary infectious agent of acquired immunodeficiency syndrome(AIDS),and non-nucleoside reverse transcriptase inhibitors(NNRTIs)are the cornerstone of HIV treatment.In the last ...Human immunodeficiency virus(HIV)is the primary infectious agent of acquired immunodeficiency syndrome(AIDS),and non-nucleoside reverse transcriptase inhibitors(NNRTIs)are the cornerstone of HIV treatment.In the last 20 years,our medicinal chemistry group has made great strides in developing several distinct novel NNRTIs,including 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine(HEPT),thio-dihydro-alkoxy-benzyl-oxopyrimidine(S-DABO),diaryltriazine(DATA),diarylpyrimidine(DAPY)analogues,and their hybrid derivatives.Application of integrated modern medicinal strategies,including structure-based drug design,fragment-based optimization,scaffold/fragment hopping,molecular/fragment hybridization,and bioisosterism,led to the development of several highly potent analogues for further evaluations.In this paper,we review the development of NNRTIs in the last two decades using the above optimization strategies,including their structure-activity relationships,molecular modeling,and their binding modes with HIV-1 reverse transcriptase(RT).Future directions and perspectives on the design and associated challenges are also discussed.展开更多
Abnormal expression or mutations in Ras proteins has been found in up to 30% of cancer cell types, making them excellent protein models to probe structure-function relationships of cell-signaling processes that mediat...Abnormal expression or mutations in Ras proteins has been found in up to 30% of cancer cell types, making them excellent protein models to probe structure-function relationships of cell-signaling processes that mediate cell transformtion. Yet, there has been very little development of therapies to help tackle Ras-related diseased states. The development of small molecules to target Ras proteins to potentially inhibit abnormal Ras-stimulated cell signaling has been conceptualized and some progress has been made over the last 16 or so years. Here, we briefly review studies characterizing Ras protein-small molecule interactions to show the importance and potential that these small molecules may have for Ras-related drug discovery. We summarize recent results, highlighting small molecules that can be directly targeted to Ras using Structure-Based Drug Design (SBDD) and Fragment-Based Lead Discovery (FBLD) methods. The inactivation of Ras oncogenic signaling in vitro by small molecules is currently an attractive hurdle to try to and leap over in order to attack the oncogenic state. In this regard, important features of previously characterized properties of small molecule Ras targets, as well as a current understanding of conformational and dynamics changes seen for Ras-related mutants, relative to wild type, must be taken into account as newer small molecule design strategies towards Ras are developed.展开更多
The project aims to develop an integrated linear-scaling time-dependent density functional theory (TD-DFT) for studying low-lying excited states of luminescent molecular materials, especially those fluorescence and ph...The project aims to develop an integrated linear-scaling time-dependent density functional theory (TD-DFT) for studying low-lying excited states of luminescent molecular materials, especially those fluorescence and phosphorescence co-emitting systems. The central idea will be "from fragments to molecule" (FF2M). That is, the fragmental information will be employed to synthesize the molecular wave function, such that the locality (transferability) of the fragments (functional groups) is directly built into the algorithms. Both relativistic and spin-adapted open-shell TD-DFT will be considered. Use of the renormalized exciton method will also be made to further enhance the efficiency and accuracy of TD-DFT. Solvent effects are to be targeted with the fragment-based solvent model. It is expected that the integrated TD-DFT and program will be of great value in rational design of luminescent molecular materials.展开更多
Considerable developments have been observed in fragment-based lead/drug discovery(FBLD/FBDD)recently,with four drugs approved and many others under investigation.Nuclear magnetic resonance(NMR)has gained increasing p...Considerable developments have been observed in fragment-based lead/drug discovery(FBLD/FBDD)recently,with four drugs approved and many others under investigation.Nuclear magnetic resonance(NMR)has gained increasing popularity in FBLD due to its intrinsic capability in characterizing protein-ligand interactions in a large dynamic range of affinity,from weak hits to highly potent drugs.Here,we summarize NMR applications in fragment-based hit-to-lead evolution,including the construction of a fragment library,screening methods,spectra processing,and the delineation of the protein-ligand binding modes.These state-of-the-art NMR techniques have been exemplified in the discovery of inhibitors against multiple targets over the past five years,and they are expected to continue to provide new insights in the future.展开更多
小分子药物与靶标的结合大都以非共价键结合,氢键、静电、疏水和范德华作用以维持结合力,这些因素越多结合越牢固,活性越强。但往往伴随分子尺寸变大,产生过膜吸收代谢等药代问题,最终影响成药性。基于片段的药物发现(fragment-based dr...小分子药物与靶标的结合大都以非共价键结合,氢键、静电、疏水和范德华作用以维持结合力,这些因素越多结合越牢固,活性越强。但往往伴随分子尺寸变大,产生过膜吸收代谢等药代问题,最终影响成药性。基于片段的药物发现(fragment-based drug discovery,FBDD)是普筛高质量片段以发现苗头分子,结合结构生物学,在片段生长、连接和融合中形成先导物,以及优化出候选物的运行中,始终兼顾化合物活性和物化性质之间的协调性。基于片段的药物发现与基于靶标结构的药物发现存在密切关系。本文以数个上市的药物简释FBDD的应用原理。展开更多
基于片段的药物发现(fragment-based drug discovery,FBDD)已成为近年来发现先导化合物的主流方法之一。它利用核磁共振技术(NMR)、表面等离子共振技术(SPR)、X-射线单晶衍射(X-ray)以及热迁移分析(TSAs)等方法筛选出与靶蛋白有弱相互...基于片段的药物发现(fragment-based drug discovery,FBDD)已成为近年来发现先导化合物的主流方法之一。它利用核磁共振技术(NMR)、表面等离子共振技术(SPR)、X-射线单晶衍射(X-ray)以及热迁移分析(TSAs)等方法筛选出与靶蛋白有弱相互作用的小分子片段,之后基于其结构信息对活性片段进行优化,进而得到更高活性的先导化合物进行新药的研发。相较于高通量筛选(high-throughput screening,HTS)这种传统的新药研发方法,FBDD的筛选效率高,得到的活性片段更易改造并且活性强、类药性好。本文结合实例综述了近年来基于片段的药物发现的研究进展。展开更多
基金funded by the National Natural Science Foundation of China (NSFC, 31900046, 81972085, 82172465 and 32161133022)the Guangdong Provincial Key Laboratory of Advanced Biomaterials (2022B1212010003)+7 种基金the National Science and Technology Innovation 2030 Major Program (2022ZD0211900)the Shenzhen Key Laboratory of Computer Aided Drug Discovery (ZDSYS20201230165400001)the Chinese Academy of Science President’s International Fellowship Initiative (PIFI)(2020FSB0003)the Guangdong Retired Expert (granted by Guangdong Province)the Shenzhen Pengcheng ScientistNSFC-SNSF Funding (32161133022)Alpha Mol&SIAT Joint LaboratoryShenzhen Government Top-talent Working Funding and Guangdong Province Academician Work Funding。
文摘Drug discovery is a crucial part of human healthcare and has dramatically benefited human lifespan and life quality in recent centuries, however, it is usually time-and effort-consuming. Structural biology has been demonstrated as a powerful tool to accelerate drug development. Among different techniques, cryo-electron microscopy(cryo-EM) is emerging as the mainstream of structure determination of biomacromolecules in the past decade and has received increasing attention from the pharmaceutical industry. Although cryo-EM still has limitations in resolution, speed and throughput, a growing number of innovative drugs are being developed with the help of cryo-EM. Here, we aim to provide an overview of how cryo-EM techniques are applied to facilitate drug discovery. The development and typical workflow of cryo-EM technique will be briefly introduced, followed by its specific applications in structure-based drug design, fragment-based drug discovery, proteolysis targeting chimeras, antibody drug development and drug repurposing. Besides cryo-EM, drug discovery innovation usually involves other state-of-the-art techniques such as artificial intelligence(AI), which is increasingly active in diverse areas. The combination of cryo-EM and AI provides an opportunity to minimize limitations of cryo-EM such as automation, throughput and interpretation of mediumresolution maps, and tends to be the new direction of future development of cryo-EM. The rapid development of cryo-EM will make it as an indispensable part of modern drug discovery.
基金funded by grants from the National Natural Science Foundation of China(81872791 and 21372050)the Young Elite Scientists Sponsorship Program by the China Association forScience and Technology(2017QNRC061)+1 种基金National Key R&D Program of China(2017YFA0506000)the Key Research and Development Program of Ningxia(2019BFG02017 and 2018BFH02001,China)
文摘Human immunodeficiency virus(HIV)is the primary infectious agent of acquired immunodeficiency syndrome(AIDS),and non-nucleoside reverse transcriptase inhibitors(NNRTIs)are the cornerstone of HIV treatment.In the last 20 years,our medicinal chemistry group has made great strides in developing several distinct novel NNRTIs,including 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine(HEPT),thio-dihydro-alkoxy-benzyl-oxopyrimidine(S-DABO),diaryltriazine(DATA),diarylpyrimidine(DAPY)analogues,and their hybrid derivatives.Application of integrated modern medicinal strategies,including structure-based drug design,fragment-based optimization,scaffold/fragment hopping,molecular/fragment hybridization,and bioisosterism,led to the development of several highly potent analogues for further evaluations.In this paper,we review the development of NNRTIs in the last two decades using the above optimization strategies,including their structure-activity relationships,molecular modeling,and their binding modes with HIV-1 reverse transcriptase(RT).Future directions and perspectives on the design and associated challenges are also discussed.
文摘Abnormal expression or mutations in Ras proteins has been found in up to 30% of cancer cell types, making them excellent protein models to probe structure-function relationships of cell-signaling processes that mediate cell transformtion. Yet, there has been very little development of therapies to help tackle Ras-related diseased states. The development of small molecules to target Ras proteins to potentially inhibit abnormal Ras-stimulated cell signaling has been conceptualized and some progress has been made over the last 16 or so years. Here, we briefly review studies characterizing Ras protein-small molecule interactions to show the importance and potential that these small molecules may have for Ras-related drug discovery. We summarize recent results, highlighting small molecules that can be directly targeted to Ras using Structure-Based Drug Design (SBDD) and Fragment-Based Lead Discovery (FBLD) methods. The inactivation of Ras oncogenic signaling in vitro by small molecules is currently an attractive hurdle to try to and leap over in order to attack the oncogenic state. In this regard, important features of previously characterized properties of small molecule Ras targets, as well as a current understanding of conformational and dynamics changes seen for Ras-related mutants, relative to wild type, must be taken into account as newer small molecule design strategies towards Ras are developed.
基金the National Natural Science Foundation of China (21290192)
文摘The project aims to develop an integrated linear-scaling time-dependent density functional theory (TD-DFT) for studying low-lying excited states of luminescent molecular materials, especially those fluorescence and phosphorescence co-emitting systems. The central idea will be "from fragments to molecule" (FF2M). That is, the fragmental information will be employed to synthesize the molecular wave function, such that the locality (transferability) of the fragments (functional groups) is directly built into the algorithms. Both relativistic and spin-adapted open-shell TD-DFT will be considered. Use of the renormalized exciton method will also be made to further enhance the efficiency and accuracy of TD-DFT. Solvent effects are to be targeted with the fragment-based solvent model. It is expected that the integrated TD-DFT and program will be of great value in rational design of luminescent molecular materials.
基金We thank the Ministry of Science and Technology of China(2019YFA0508400 and 2016YFA0500700)the National Natural Science Foundation of China(21874123 and 21807095)Collaborative Innovation Program of Hefei Science Center,CAS(2020HSC-CIP009)for the financial support.
文摘Considerable developments have been observed in fragment-based lead/drug discovery(FBLD/FBDD)recently,with four drugs approved and many others under investigation.Nuclear magnetic resonance(NMR)has gained increasing popularity in FBLD due to its intrinsic capability in characterizing protein-ligand interactions in a large dynamic range of affinity,from weak hits to highly potent drugs.Here,we summarize NMR applications in fragment-based hit-to-lead evolution,including the construction of a fragment library,screening methods,spectra processing,and the delineation of the protein-ligand binding modes.These state-of-the-art NMR techniques have been exemplified in the discovery of inhibitors against multiple targets over the past five years,and they are expected to continue to provide new insights in the future.
文摘小分子药物与靶标的结合大都以非共价键结合,氢键、静电、疏水和范德华作用以维持结合力,这些因素越多结合越牢固,活性越强。但往往伴随分子尺寸变大,产生过膜吸收代谢等药代问题,最终影响成药性。基于片段的药物发现(fragment-based drug discovery,FBDD)是普筛高质量片段以发现苗头分子,结合结构生物学,在片段生长、连接和融合中形成先导物,以及优化出候选物的运行中,始终兼顾化合物活性和物化性质之间的协调性。基于片段的药物发现与基于靶标结构的药物发现存在密切关系。本文以数个上市的药物简释FBDD的应用原理。
文摘基于片段的药物发现(fragment-based drug discovery,FBDD)已成为近年来发现先导化合物的主流方法之一。它利用核磁共振技术(NMR)、表面等离子共振技术(SPR)、X-射线单晶衍射(X-ray)以及热迁移分析(TSAs)等方法筛选出与靶蛋白有弱相互作用的小分子片段,之后基于其结构信息对活性片段进行优化,进而得到更高活性的先导化合物进行新药的研发。相较于高通量筛选(high-throughput screening,HTS)这种传统的新药研发方法,FBDD的筛选效率高,得到的活性片段更易改造并且活性强、类药性好。本文结合实例综述了近年来基于片段的药物发现的研究进展。