This paper studies the global and local properties of the trajectories of Gaussian random fields with stationary increments and proves sufficient conditions for Strassen's functional laws of the iterated logarithm...This paper studies the global and local properties of the trajectories of Gaussian random fields with stationary increments and proves sufficient conditions for Strassen's functional laws of the iterated logarithm at zero and infinity respectively.The sets of limit points of those Gaussian random fields are obtained.The main results are applied to fractional Riesz-Bessel processes and the sets of limit points of this field are obtained.展开更多
基金Supported by NSFC(Grants Nos.11671115,11731012 and 11871425)NSF(Grant No.DMS-1855185)
文摘This paper studies the global and local properties of the trajectories of Gaussian random fields with stationary increments and proves sufficient conditions for Strassen's functional laws of the iterated logarithm at zero and infinity respectively.The sets of limit points of those Gaussian random fields are obtained.The main results are applied to fractional Riesz-Bessel processes and the sets of limit points of this field are obtained.