In this paper, firstly, we study the local existence and uniqueness of mild solutions for fractional evolution systems with nonlocal in time nonlinearity. Then, we claim that such a mild solution is weak solution of t...In this paper, firstly, we study the local existence and uniqueness of mild solutions for fractional evolution systems with nonlocal in time nonlinearity. Then, we claim that such a mild solution is weak solution of this system. Finally, we prove a blow-up result under some conditions.展开更多
This work studies the asymptotic formulas for the solutions of the Sturm-Liouville equation with the polynomial dependence in the spectral parameter. Using these asymptotic formulas it is proved some trace formulas fo...This work studies the asymptotic formulas for the solutions of the Sturm-Liouville equation with the polynomial dependence in the spectral parameter. Using these asymptotic formulas it is proved some trace formulas for the eigenvalues of a simple boundary problem generated in a finite interval by the considered Sturm-Liouville equation.展开更多
基金Supported by National Natural Science Foundation of China-NSAF(Grant No.10976026)
文摘In this paper, firstly, we study the local existence and uniqueness of mild solutions for fractional evolution systems with nonlocal in time nonlinearity. Then, we claim that such a mild solution is weak solution of this system. Finally, we prove a blow-up result under some conditions.
文摘This work studies the asymptotic formulas for the solutions of the Sturm-Liouville equation with the polynomial dependence in the spectral parameter. Using these asymptotic formulas it is proved some trace formulas for the eigenvalues of a simple boundary problem generated in a finite interval by the considered Sturm-Liouville equation.