期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
关于分数阶导数的几种不同定义的分析与比较 被引量:17
1
作者 林孔容 《闽江学院学报》 2003年第5期3-6,共4页
本文通过对分数阶导数的几种不同定义,进行分析与比较,说明它们的导入过程和内在联系。
关键词 分数阶导数 GAMMA函数 n次积分 N阶导数 Caputo定义 Rierrmnn-Liouville定义
下载PDF
Blow-up of Solutions for a Time-space Fractional Evolution System 被引量:1
2
作者 Yong Qiang XU Zhong TAN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第6期1067-1074,共8页
In this paper, firstly, we study the local existence and uniqueness of mild solutions for fractional evolution systems with nonlocal in time nonlinearity. Then, we claim that such a mild solution is weak solution of t... In this paper, firstly, we study the local existence and uniqueness of mild solutions for fractional evolution systems with nonlocal in time nonlinearity. Then, we claim that such a mild solution is weak solution of this system. Finally, we prove a blow-up result under some conditions. 展开更多
关键词 Local existence fractional integrals and derivatives evolution systems
原文传递
Asymptotic Formulas of the Solutions and the Trace Formulas for the Polynomial Pencil of the Sturm-Liouville Operators
3
作者 A. Adiloglu Nabiev 《Applied Mathematics》 2016年第18期2411-2417,共7页
This work studies the asymptotic formulas for the solutions of the Sturm-Liouville equation with the polynomial dependence in the spectral parameter. Using these asymptotic formulas it is proved some trace formulas fo... This work studies the asymptotic formulas for the solutions of the Sturm-Liouville equation with the polynomial dependence in the spectral parameter. Using these asymptotic formulas it is proved some trace formulas for the eigenvalues of a simple boundary problem generated in a finite interval by the considered Sturm-Liouville equation. 展开更多
关键词 Sturm-Liouville Equation Asymptotic Formulas for Solutions Spectral Parameter EIGENVALUE Boundary Value Problem Trace Formula fractional integrals and derivatives
下载PDF
分数阶常微分方程迭代方法的解 被引量:2
4
作者 郑达艺 《数学的实践与认识》 北大核心 2015年第2期276-283,共8页
通过采用分数阶积分与导数的复合,把分数阶常微分方程转化为积分方程.构造出迭代格式,证明它的收敛性,进一步给出近似解的误差估计.并给出数值例子.
关键词 分数阶微积分 分数阶积分与导数的复合 迭代格式
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部