Formation control is a cooperative control concept in which multiple autonomous underwater mobile robots are deployed for a group motion and/or control mission. This paper presents a brief review on various cooperativ...Formation control is a cooperative control concept in which multiple autonomous underwater mobile robots are deployed for a group motion and/or control mission. This paper presents a brief review on various cooperative search and formation control strategies for multiple autonomous underwater vehicles (AUV) based on literature reported till date. Various cooperative and formation control schemes for collecting huge amount of data based on formation regulation control and formation tracking control are discussed. To address the challenge of detecting AUV failure in the fleet, communication issues, collision and obstacle avoidance are also taken into attention. Stability analysis of the feasible formation is also presented. This paper may be intended to serve as a convenient reference for the further research on formation control of multiple underwater mobile robots.展开更多
This paper investigates a time-varying anti-disturbance formation problem for a group of quadrotor aircrafts with time-varying uncertainties and a directed interaction topology.A novel Finite-Time Convergent Extended ...This paper investigates a time-varying anti-disturbance formation problem for a group of quadrotor aircrafts with time-varying uncertainties and a directed interaction topology.A novel Finite-Time Convergent Extended State Observer(FTCESO)based fully-distributed formation control scheme is proposed to enhance the disturbance rejection and the formation tracking performances for networked quadrotors.By adopting the hierarchical control strategy,the multiquadrotor system is separated into two subsystems:the outer-loop cooperative subsystem and the inner-loop attitude subsystem.In the outer-loop subsystem,with the estimation of disturbing forces and uncertain dynamics from FTCESOs,an adaptive consensus theory based cooperative controller is exploited to ensure the multiple quadrotors form and maintain a time-varying pattern relying only on the positions of the neighboring aircrafts.In the inner-loop subsystem,the desired attitude generated by the cooperative control law is stably tracked under a FTCESO-based attitude controller in a finite time.Based on a detailed algorithm to specify the cooperative control protocol,the feasibility condition to achieve the time-varying anti-disturbance formation tracking is derived and the rigorous analysis of the whole closed-loop multi-quadrotor system is given.Some numerical examples are conducted to intuitively demonstrate the effectiveness and the improvements of the proposed control framework.展开更多
This paper studies time-varying fault-tolerant formation tracking problems for the multiple cruise missile system under directed topologies subjected to actuator failures. Firstly, the timevarying fault-tolerant forma...This paper studies time-varying fault-tolerant formation tracking problems for the multiple cruise missile system under directed topologies subjected to actuator failures. Firstly, the timevarying fault-tolerant formation tracking process for the multiple cruise missile system is divided into the guidance loop and the control loop. Then protocols are constructed to accomplish distributed fault-tolerant formation tracking in the guidance loop with the adaptive updating mechanism, in the condition where neither the knowledge about actuator malfunctions nor any global information of the communication topology remains available. Moreover, sufficient conditions to accomplish formation tracking are presented, and it is shown that the multiple cruise missile system can carry on the predefined time-varying fault-tolerant control (FTC) formation tracking through the active disturbances rejection controller (ADRC) and the proportion integration (PI) controller by the way of the fault-tolerant protocol utilizing the designed strategies, in the event of actuator failures. At last, numerical analysis and simulation are designed to verify the theoretical results.展开更多
队形重构是集群无人机(UAV)控制的重要问题,指无人机按照要求安全、无碰撞地从一个队形变换到另一个队形,其难点在于快速规划最优安全轨迹并控制无人机进行轨迹姿态的高精度跟踪。针对集群无人机队形重构的上述问题,首先,基于CAPT(Concu...队形重构是集群无人机(UAV)控制的重要问题,指无人机按照要求安全、无碰撞地从一个队形变换到另一个队形,其难点在于快速规划最优安全轨迹并控制无人机进行轨迹姿态的高精度跟踪。针对集群无人机队形重构的上述问题,首先,基于CAPT(Concurrent Assignment and Planning of Trajectories)算法,解决了多无人机的目标分配和轨迹生成的实时性问题,实现了集群无人机的最优安全路径规划;其次,提出一种有限时间多变量积分滑模连续控制算法,解决了无人机轨迹姿态的高精度跟踪问题,并通过MATLAB仿真验证了该控制算法的有效性;最后,为了更加真实直观地演示无人机三维仿真效果,建立了基于Gazebo-ROS的无人机仿真平台,实现了12架四旋翼无人机队形重构"建模-仿真-可视化"的一体化仿真演示,验证了上述路径规划算法和轨迹姿态控制算法的有效性。展开更多
In this paper,a novel formation control strategy is proposed to address the target tracking and circumnavigating problem of multi-UAV formation.First,two sets of definitions,space angle definition and space vector def...In this paper,a novel formation control strategy is proposed to address the target tracking and circumnavigating problem of multi-UAV formation.First,two sets of definitions,space angle definition and space vector definition,are presented in order to describe the flight state and construct the desired relative velocity.Then,the relative kinematic model between the UAV and the moving target is established.The distributed control law is constructed by using dynamic feedback linearization so as to realize the tracking and circumnavigating control with the desired velocity,circing radius and relative angular spacing.Next,the exponential stability of the closed-loop system is further guaranteed by properly choosing some corresponding parameters based on the Lyapunov method.Finally,the numerical simulation is caried out to verify the effectiveness of the proposed control method.展开更多
文摘Formation control is a cooperative control concept in which multiple autonomous underwater mobile robots are deployed for a group motion and/or control mission. This paper presents a brief review on various cooperative search and formation control strategies for multiple autonomous underwater vehicles (AUV) based on literature reported till date. Various cooperative and formation control schemes for collecting huge amount of data based on formation regulation control and formation tracking control are discussed. To address the challenge of detecting AUV failure in the fleet, communication issues, collision and obstacle avoidance are also taken into attention. Stability analysis of the feasible formation is also presented. This paper may be intended to serve as a convenient reference for the further research on formation control of multiple underwater mobile robots.
文摘This paper investigates a time-varying anti-disturbance formation problem for a group of quadrotor aircrafts with time-varying uncertainties and a directed interaction topology.A novel Finite-Time Convergent Extended State Observer(FTCESO)based fully-distributed formation control scheme is proposed to enhance the disturbance rejection and the formation tracking performances for networked quadrotors.By adopting the hierarchical control strategy,the multiquadrotor system is separated into two subsystems:the outer-loop cooperative subsystem and the inner-loop attitude subsystem.In the outer-loop subsystem,with the estimation of disturbing forces and uncertain dynamics from FTCESOs,an adaptive consensus theory based cooperative controller is exploited to ensure the multiple quadrotors form and maintain a time-varying pattern relying only on the positions of the neighboring aircrafts.In the inner-loop subsystem,the desired attitude generated by the cooperative control law is stably tracked under a FTCESO-based attitude controller in a finite time.Based on a detailed algorithm to specify the cooperative control protocol,the feasibility condition to achieve the time-varying anti-disturbance formation tracking is derived and the rigorous analysis of the whole closed-loop multi-quadrotor system is given.Some numerical examples are conducted to intuitively demonstrate the effectiveness and the improvements of the proposed control framework.
基金supported by the Natural Science Foundation of China(61101004 61803014)
文摘This paper studies time-varying fault-tolerant formation tracking problems for the multiple cruise missile system under directed topologies subjected to actuator failures. Firstly, the timevarying fault-tolerant formation tracking process for the multiple cruise missile system is divided into the guidance loop and the control loop. Then protocols are constructed to accomplish distributed fault-tolerant formation tracking in the guidance loop with the adaptive updating mechanism, in the condition where neither the knowledge about actuator malfunctions nor any global information of the communication topology remains available. Moreover, sufficient conditions to accomplish formation tracking are presented, and it is shown that the multiple cruise missile system can carry on the predefined time-varying fault-tolerant control (FTC) formation tracking through the active disturbances rejection controller (ADRC) and the proportion integration (PI) controller by the way of the fault-tolerant protocol utilizing the designed strategies, in the event of actuator failures. At last, numerical analysis and simulation are designed to verify the theoretical results.
文摘队形重构是集群无人机(UAV)控制的重要问题,指无人机按照要求安全、无碰撞地从一个队形变换到另一个队形,其难点在于快速规划最优安全轨迹并控制无人机进行轨迹姿态的高精度跟踪。针对集群无人机队形重构的上述问题,首先,基于CAPT(Concurrent Assignment and Planning of Trajectories)算法,解决了多无人机的目标分配和轨迹生成的实时性问题,实现了集群无人机的最优安全路径规划;其次,提出一种有限时间多变量积分滑模连续控制算法,解决了无人机轨迹姿态的高精度跟踪问题,并通过MATLAB仿真验证了该控制算法的有效性;最后,为了更加真实直观地演示无人机三维仿真效果,建立了基于Gazebo-ROS的无人机仿真平台,实现了12架四旋翼无人机队形重构"建模-仿真-可视化"的一体化仿真演示,验证了上述路径规划算法和轨迹姿态控制算法的有效性。
基金supported in part by the National Natural Science Foundation of China(61703081,62173082)the Liaoning Joint Fund of National Natural Science Foundation of China(U1908217)+2 种基金the Liaoning Revitalization Talents Program(XLYC1801005)Natural Science Foundation of Liaoning Province(20170520113)and the Fundamental Research Funds for the Central Universities(N2004016).
文摘In this paper,a novel formation control strategy is proposed to address the target tracking and circumnavigating problem of multi-UAV formation.First,two sets of definitions,space angle definition and space vector definition,are presented in order to describe the flight state and construct the desired relative velocity.Then,the relative kinematic model between the UAV and the moving target is established.The distributed control law is constructed by using dynamic feedback linearization so as to realize the tracking and circumnavigating control with the desired velocity,circing radius and relative angular spacing.Next,the exponential stability of the closed-loop system is further guaranteed by properly choosing some corresponding parameters based on the Lyapunov method.Finally,the numerical simulation is caried out to verify the effectiveness of the proposed control method.