Gliadin, the major storage protein in endosperm, affects grain quality in spring wheat by its content and composition. Eighteen cultivars differing in HMW-GS were used in the study to approach the accumulation pattern...Gliadin, the major storage protein in endosperm, affects grain quality in spring wheat by its content and composition. Eighteen cultivars differing in HMW-GS were used in the study to approach the accumulation pattern of gliadin fractions α, β, γ, ω and regulation of three kinds of nitrogen source. The results showed that the content of gliadin in grains increased gradually along with the process of grain-filling, but the accumulation intensity and final content differed evidently among cultivars with different HMW-GS composition. Of all the subunit types used here, cultivars with subunits 7+9 and 2+12 had smaller accumulation intensity and lower final content. During grain-filling, 4 gliadin fractions had the same increase trend, but differed in accumulation course. The dynamic trends of gliadin accumulation were similar in different nitrogen treatments whose effects on initial amount, accumulation intensity and final level of accumulation varied with cultivars. Of three nitrogen fertilizer types, the amide-form nitrogen source was better to the formation and accumulation of gliadin as well as its four fractions.展开更多
文摘Gliadin, the major storage protein in endosperm, affects grain quality in spring wheat by its content and composition. Eighteen cultivars differing in HMW-GS were used in the study to approach the accumulation pattern of gliadin fractions α, β, γ, ω and regulation of three kinds of nitrogen source. The results showed that the content of gliadin in grains increased gradually along with the process of grain-filling, but the accumulation intensity and final content differed evidently among cultivars with different HMW-GS composition. Of all the subunit types used here, cultivars with subunits 7+9 and 2+12 had smaller accumulation intensity and lower final content. During grain-filling, 4 gliadin fractions had the same increase trend, but differed in accumulation course. The dynamic trends of gliadin accumulation were similar in different nitrogen treatments whose effects on initial amount, accumulation intensity and final level of accumulation varied with cultivars. Of three nitrogen fertilizer types, the amide-form nitrogen source was better to the formation and accumulation of gliadin as well as its four fractions.