Global nitrogen (N) emission and deposition have been increased rapidly due to massive mobilization of N which may have long- reaching impacts on ecosystems. Many agricultural and forest ecosystems have been identif...Global nitrogen (N) emission and deposition have been increased rapidly due to massive mobilization of N which may have long- reaching impacts on ecosystems. Many agricultural and forest ecosystems have been identified as secondary N sources. In the present study, the input-output budget of inorganic N in a small forested watershed of subtropical China was investigated. Inorganic N wet deposition and discharge by stream water were monitored from March, 2007 to February, 2009. The concentrations and fluxes of inorganic N in wet precipitation and stream water and net retention of N were calculated. Global N input by dry deposition and biological fixation and N output by denitrification for forested watersheds elsewhere were reported as references to evaluate whether the studied forested watershed is a source or a sink for N. The results show that the inorganic N output by the stream water is mainly caused by NO3-N even though the input is dominated by NH4+-N. The mean flux of inorganic N input by wet precipitation and output by stream water is 1.672 and 0.537 g N/(m2.yr), respectively, which indicates that most of inorganic N input is retained in the forested watershed. Net retention of inorganic N reaches 1.135 g N/(m2.yr) considering wet precipitation as the main input and stream water as the main output, ff N input by dry deposition and biological fixation and output by denitlification are taken into account, this subtropical forested watershed currently acts as a considerable sink for N, with a net sink ranging from 1.309 to 1.913 g N/(m2-yr) which may enhance carbon sequestration of the terrestrial ecosystem.展开更多
Boundary extraction of watershed is an important step in forest landscape research. The boundary of the upriver wa-tershed of the Hunhe River in the sub-alpine Qingyuan County of eastern Liaoning Province, China was e...Boundary extraction of watershed is an important step in forest landscape research. The boundary of the upriver wa-tershed of the Hunhe River in the sub-alpine Qingyuan County of eastern Liaoning Province, China was extracted by digital elevation modeling (DEM) data in ArcInfo8.1. Remote sensing image of the corresponding region was applied to help modify its copy according to Enhanced Thematic Mapper (ETM) image抯 profuse geomorphological structure information. Both the DEM-dependent boundary and modified copy were overlapped with county map and drainage network map to visually check the effects of result. Overlap of county map suggested a nice extraction of the boundary line since the two layers matched precisely, which indicated the DEM-dependent boundary by program was effective and precise. Further upload of drainage network showed discrepancies between the boundary and the drainage network. Altogether, there were three sections of the extraction result that needed to correct. Compared with this extraction boundary, the modified boundary had a better match to the drainage network as well as to the county map. Comprehensive analysis demonstrated that the program extraction has generally fine precision in position and excels the digitized result by hand. The errors of the DEM-dependant extraction are due to the fact that it is difficult for program to recognize sections of complex landform especially altered by human activities, but these errors are discernable and adjustable because the spatial resolution of ETM image is less than that of DEM. This study result proved that application of remote sensing information could help obtain better result when DEM method is used in extraction of watershed boundary.展开更多
We set up two experimental catchments to provide an improved understanding of hydrological processes in a subtropical forested area in the northern part of Okinawa Island, Japan. We calculated runoff using water level...We set up two experimental catchments to provide an improved understanding of hydrological processes in a subtropical forested area in the northern part of Okinawa Island, Japan. We calculated runoff using water level data (recorded by a pressure-type water level gauge installed in a box culvert) and a discharge rating curve (derived from in situ observations). Water balance calculations for 2010 showed that the rainfall, runoff and evapotranspiration losses (= rainfall – runoff) were 3403.6 mm, 2285.7 mm and 1117.4 mm, respectively. This result was in agreement with previous results from other forested experimental catchments in this region. Direct runoff, as a proportion of event total rainfall, can be expressed by the empirical equation (Qdirect = 0.0048, Pevent 1.7971, R2 = 0.9599). When Pevent was 100 mm or less, the ratios of Qdirect to Pevent were less than 15% in general. When Pevent exceeded 100 mm, the ratios were 20% - 30%.展开更多
基金supported by the National Natural Science Foundation of China (No. 41071141,40625001)the International Foundation of Science (No. C/4077-2)the fund from Institute of Soil Science,Chinese Academy of Sciences (No. ISSASIP0704)
文摘Global nitrogen (N) emission and deposition have been increased rapidly due to massive mobilization of N which may have long- reaching impacts on ecosystems. Many agricultural and forest ecosystems have been identified as secondary N sources. In the present study, the input-output budget of inorganic N in a small forested watershed of subtropical China was investigated. Inorganic N wet deposition and discharge by stream water were monitored from March, 2007 to February, 2009. The concentrations and fluxes of inorganic N in wet precipitation and stream water and net retention of N were calculated. Global N input by dry deposition and biological fixation and N output by denitrification for forested watersheds elsewhere were reported as references to evaluate whether the studied forested watershed is a source or a sink for N. The results show that the inorganic N output by the stream water is mainly caused by NO3-N even though the input is dominated by NH4+-N. The mean flux of inorganic N input by wet precipitation and output by stream water is 1.672 and 0.537 g N/(m2.yr), respectively, which indicates that most of inorganic N input is retained in the forested watershed. Net retention of inorganic N reaches 1.135 g N/(m2.yr) considering wet precipitation as the main input and stream water as the main output, ff N input by dry deposition and biological fixation and output by denitlification are taken into account, this subtropical forested watershed currently acts as a considerable sink for N, with a net sink ranging from 1.309 to 1.913 g N/(m2-yr) which may enhance carbon sequestration of the terrestrial ecosystem.
基金This work was supported by Knowledge Innovation Pro-gram Chinese Academy of Sciences (No. KZCX2-SW-320-3 & KZCX3-SW-425).
文摘Boundary extraction of watershed is an important step in forest landscape research. The boundary of the upriver wa-tershed of the Hunhe River in the sub-alpine Qingyuan County of eastern Liaoning Province, China was extracted by digital elevation modeling (DEM) data in ArcInfo8.1. Remote sensing image of the corresponding region was applied to help modify its copy according to Enhanced Thematic Mapper (ETM) image抯 profuse geomorphological structure information. Both the DEM-dependent boundary and modified copy were overlapped with county map and drainage network map to visually check the effects of result. Overlap of county map suggested a nice extraction of the boundary line since the two layers matched precisely, which indicated the DEM-dependent boundary by program was effective and precise. Further upload of drainage network showed discrepancies between the boundary and the drainage network. Altogether, there were three sections of the extraction result that needed to correct. Compared with this extraction boundary, the modified boundary had a better match to the drainage network as well as to the county map. Comprehensive analysis demonstrated that the program extraction has generally fine precision in position and excels the digitized result by hand. The errors of the DEM-dependant extraction are due to the fact that it is difficult for program to recognize sections of complex landform especially altered by human activities, but these errors are discernable and adjustable because the spatial resolution of ETM image is less than that of DEM. This study result proved that application of remote sensing information could help obtain better result when DEM method is used in extraction of watershed boundary.
文摘We set up two experimental catchments to provide an improved understanding of hydrological processes in a subtropical forested area in the northern part of Okinawa Island, Japan. We calculated runoff using water level data (recorded by a pressure-type water level gauge installed in a box culvert) and a discharge rating curve (derived from in situ observations). Water balance calculations for 2010 showed that the rainfall, runoff and evapotranspiration losses (= rainfall – runoff) were 3403.6 mm, 2285.7 mm and 1117.4 mm, respectively. This result was in agreement with previous results from other forested experimental catchments in this region. Direct runoff, as a proportion of event total rainfall, can be expressed by the empirical equation (Qdirect = 0.0048, Pevent 1.7971, R2 = 0.9599). When Pevent was 100 mm or less, the ratios of Qdirect to Pevent were less than 15% in general. When Pevent exceeded 100 mm, the ratios were 20% - 30%.