Recent advances in information and communication technologies, such as mobile Internet and smart- phones, have created new paradigms for participatory environment monitoring. The ubiquitous mobile phones with capabili...Recent advances in information and communication technologies, such as mobile Internet and smart- phones, have created new paradigms for participatory environment monitoring. The ubiquitous mobile phones with capabilities such as a global positioning system, camera, and network access, offer opportunities to estab- lish distributed monitoring networks that can perform a wide range of measurements for a landscape. This study examined the potential of mobile phone-based community monitoring of fall webworm (Hyphantria cunea Drury). We built a prototype of a participatory fall webworm monitoring System based on mobile devices that stream- lined data collection, transmission, and visualization. We also assessed the accuracy and reliability of the data collected by the local community. The system performance was evaluated at the Ziya commune of Tianjin municipality in northern China, where fall webworm infestation has occurred. The local community provided data with accuracy comparable to expert measurements (Willmott's index of agreement 〉0.85). Measurements by the local community effectively complemented remote sensing images in both temporal and spatial resolution.展开更多
基金supported by National Science and Technology Major Projects of China(21-Y30B05-9001-13/15)
文摘Recent advances in information and communication technologies, such as mobile Internet and smart- phones, have created new paradigms for participatory environment monitoring. The ubiquitous mobile phones with capabilities such as a global positioning system, camera, and network access, offer opportunities to estab- lish distributed monitoring networks that can perform a wide range of measurements for a landscape. This study examined the potential of mobile phone-based community monitoring of fall webworm (Hyphantria cunea Drury). We built a prototype of a participatory fall webworm monitoring System based on mobile devices that stream- lined data collection, transmission, and visualization. We also assessed the accuracy and reliability of the data collected by the local community. The system performance was evaluated at the Ziya commune of Tianjin municipality in northern China, where fall webworm infestation has occurred. The local community provided data with accuracy comparable to expert measurements (Willmott's index of agreement 〉0.85). Measurements by the local community effectively complemented remote sensing images in both temporal and spatial resolution.