Origami foldcore structures can be used in thin-walled sandwich panels to provide unique advantages over traditional honey-comb structures.For instance,their continuously connected space is available for flowing throu...Origami foldcore structures can be used in thin-walled sandwich panels to provide unique advantages over traditional honey-comb structures.For instance,their continuously connected space is available for flowing through cooling liquid or compact pipeline placement.However,origami foldcores suffer from relatively low-energy absorption.This paper proposes a new design of energy-absorbing foldcore structures for sandwich panels,including the geometric design,experimental tests,numerical parametric study,and theoretical estimation of energy absorption.Origami initiators are introduced to the Miura foldcores to induce a failure mode with more transverse folds,which is not common for regular foldcore structures.As a result,60%higher energy absorption and tunable load uniformity can be achieved.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.12202320)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515110589).
文摘Origami foldcore structures can be used in thin-walled sandwich panels to provide unique advantages over traditional honey-comb structures.For instance,their continuously connected space is available for flowing through cooling liquid or compact pipeline placement.However,origami foldcores suffer from relatively low-energy absorption.This paper proposes a new design of energy-absorbing foldcore structures for sandwich panels,including the geometric design,experimental tests,numerical parametric study,and theoretical estimation of energy absorption.Origami initiators are introduced to the Miura foldcores to induce a failure mode with more transverse folds,which is not common for regular foldcore structures.As a result,60%higher energy absorption and tunable load uniformity can be achieved.