Foam materials have many attractive properties because of their low-weight and cell structure. By sandwiches with an aluminum-foam core, it is possible to obtain higher structural stiffness and rigidity, maintain stab...Foam materials have many attractive properties because of their low-weight and cell structure. By sandwiches with an aluminum-foam core, it is possible to obtain higher structural stiffness and rigidity, maintain stability against buckling and additionally make use of the high energy dissipation capability of the bare foams. The most obvious and straightforward one is adhesive bonding of pre-fabricated aluminum foams and metal face sheets. A new manufacture processing is proposed for preparation of aluminum alloy foam sandwich, ie., Al-plate/mixed element powder/ Al-plate are sandwich rolled together by a large reduction in pass, which is then foamed in heating furnace to manufacture end-use product. Aluminum alloy foam sandwich is obtained in this experiment. The experimental results showed that the process of rolling interface belongs to mechanical bonding, whose mechanism is film theory. While interface bonding belong to metallurgy bonding in the process of foaming, Al atom interdiffused in the interface, and no new phase was generated in the foaming process of aluminum face sheet/powders precursor. Bending fatigue test results showed that the bonding force of the foamed sandwich interface is very high, in fatigue test fracture occurred in the whole foam aluminum sandwich panels and Al/foam core interface was not laminated.展开更多
Aluminum foam sandwich was prepared by rolling-bonding/powder metallurgical foaming technology, and the effects of rolling on bond strength of face sheet/powders and powder density were studied. Moreover, the foaming ...Aluminum foam sandwich was prepared by rolling-bonding/powder metallurgical foaming technology, and the effects of rolling on bond strength of face sheet/powders and powder density were studied. Moreover, the foaming agent, TiH2, was heat treated and a certain amount of Mg was added into powder in an attempt to understand how the stability and uniformity of foam was improved. The experimental results show that the foaming precursors with ideal quality were obtained by rolling-bonding process. When rolling reduction is 67%, the consistency of powders reach to 99.87%. Throughout consideration of the bonding of face sheet/ core layer powders and deformation characteristic of powders, the optimum rolling reduction is 60%-70%. Cracks and drainage during foaming were inhibited by heat treatment of foaming agent TiH2 and the addition of a certain amount of Mg. The optimum heat treatment way of TiH2 is that heat preserving 1 hour at 450 ℃; the amount of adding Mg is 1wt%.展开更多
文摘Foam materials have many attractive properties because of their low-weight and cell structure. By sandwiches with an aluminum-foam core, it is possible to obtain higher structural stiffness and rigidity, maintain stability against buckling and additionally make use of the high energy dissipation capability of the bare foams. The most obvious and straightforward one is adhesive bonding of pre-fabricated aluminum foams and metal face sheets. A new manufacture processing is proposed for preparation of aluminum alloy foam sandwich, ie., Al-plate/mixed element powder/ Al-plate are sandwich rolled together by a large reduction in pass, which is then foamed in heating furnace to manufacture end-use product. Aluminum alloy foam sandwich is obtained in this experiment. The experimental results showed that the process of rolling interface belongs to mechanical bonding, whose mechanism is film theory. While interface bonding belong to metallurgy bonding in the process of foaming, Al atom interdiffused in the interface, and no new phase was generated in the foaming process of aluminum face sheet/powders precursor. Bending fatigue test results showed that the bonding force of the foamed sandwich interface is very high, in fatigue test fracture occurred in the whole foam aluminum sandwich panels and Al/foam core interface was not laminated.
基金Funded by the National Natural Science Foundation of China(No.50704012)the Science and Technology Foundation of Shenyang (No. F10-205-1-59)
文摘Aluminum foam sandwich was prepared by rolling-bonding/powder metallurgical foaming technology, and the effects of rolling on bond strength of face sheet/powders and powder density were studied. Moreover, the foaming agent, TiH2, was heat treated and a certain amount of Mg was added into powder in an attempt to understand how the stability and uniformity of foam was improved. The experimental results show that the foaming precursors with ideal quality were obtained by rolling-bonding process. When rolling reduction is 67%, the consistency of powders reach to 99.87%. Throughout consideration of the bonding of face sheet/ core layer powders and deformation characteristic of powders, the optimum rolling reduction is 60%-70%. Cracks and drainage during foaming were inhibited by heat treatment of foaming agent TiH2 and the addition of a certain amount of Mg. The optimum heat treatment way of TiH2 is that heat preserving 1 hour at 450 ℃; the amount of adding Mg is 1wt%.