Two kinds of novel fluorescent hyperbranched polymers were synthesized by the end-capping approach. The fluorescent hyperbranched polyether (FPEOTM) was obtained by end capping the hyperbranched poly(hydroxyl ether) (...Two kinds of novel fluorescent hyperbranched polymers were synthesized by the end-capping approach. The fluorescent hyperbranched polyether (FPEOTM) was obtained by end capping the hyperbranched poly(hydroxyl ether) (PEOTM) with guest molecules N,N-dimethylaminobenzaldehyde (DMABA). In addition, in the presence of triethylamine, the hyperbranched polysulfone-amine with terminal double bonds (HPSA) was synthesized by polyaddition of a new AB2 type monomer (SAP, sulfone amine piperazine) at 40℃ for 60 h in chloroform solution. Then the fluorescent hyperbranched polysulfone-amine (FHPSA) was prepared by addition of guest molecules N,N-dimethylaminoanilines (DMAA) with the terminal double bonds of HPSA. The two resulting polymers fluoresce yellow-green color in both solid and solution states. The maximum emission wavelength is (460 ±10) nm and (470±10) nm, respectively. A novel 'complex quenching effect' for hyperbranched polymer was observed. The fluorescence can be quenched by transition metal展开更多
Fluorescence material of Sm doped Si-Ca-Mg system was synthesized by using the method of solid phase reaction at high temperature. The phase composition and crystal structure of this material were analyzed with XRD me...Fluorescence material of Sm doped Si-Ca-Mg system was synthesized by using the method of solid phase reaction at high temperature. The phase composition and crystal structure of this material were analyzed with XRD method for its composition and the existence form of Sm atom. We aimed to exactly determine the phase composition of this fluorescence material and the doping position and environment of rare-earth Sm atom in the system because these factors have significant effects on the properties. The analytical results show that the Sm atoms dope in Ca2O26Si6Sm8 lattice in the form of atomic site-occupation in three different space positions with different occupancy rates. Therefore, based on the XRD analytical results, the fluorescence material of Sm doped Si-Ca-Mg system with high performance can be synthesized.展开更多
文摘Two kinds of novel fluorescent hyperbranched polymers were synthesized by the end-capping approach. The fluorescent hyperbranched polyether (FPEOTM) was obtained by end capping the hyperbranched poly(hydroxyl ether) (PEOTM) with guest molecules N,N-dimethylaminobenzaldehyde (DMABA). In addition, in the presence of triethylamine, the hyperbranched polysulfone-amine with terminal double bonds (HPSA) was synthesized by polyaddition of a new AB2 type monomer (SAP, sulfone amine piperazine) at 40℃ for 60 h in chloroform solution. Then the fluorescent hyperbranched polysulfone-amine (FHPSA) was prepared by addition of guest molecules N,N-dimethylaminoanilines (DMAA) with the terminal double bonds of HPSA. The two resulting polymers fluoresce yellow-green color in both solid and solution states. The maximum emission wavelength is (460 ±10) nm and (470±10) nm, respectively. A novel 'complex quenching effect' for hyperbranched polymer was observed. The fluorescence can be quenched by transition metal
基金National Natural Science Foundation of China 20671020
文摘Fluorescence material of Sm doped Si-Ca-Mg system was synthesized by using the method of solid phase reaction at high temperature. The phase composition and crystal structure of this material were analyzed with XRD method for its composition and the existence form of Sm atom. We aimed to exactly determine the phase composition of this fluorescence material and the doping position and environment of rare-earth Sm atom in the system because these factors have significant effects on the properties. The analytical results show that the Sm atoms dope in Ca2O26Si6Sm8 lattice in the form of atomic site-occupation in three different space positions with different occupancy rates. Therefore, based on the XRD analytical results, the fluorescence material of Sm doped Si-Ca-Mg system with high performance can be synthesized.