An experimental research was carried out to study the fluid mechanics of underwater supersonic gas jets. High pressure air was injected into a water tank through converging-diverging nozzles (Laval nozzles). The jets ...An experimental research was carried out to study the fluid mechanics of underwater supersonic gas jets. High pressure air was injected into a water tank through converging-diverging nozzles (Laval nozzles). The jets were operated at different conditions of over-, full- and under-expansions. The jet sequences were visualized using a CCD camera. It was found that the injection of supersonic air jets into water is always accompanied by strong flow oscillation, which is related to the phenomenon of shock waves feedback in the gas phase. The shock wave feedback is different from the acoustic feedback when a supersonic gas jet discharges into open air, which causes screech tone. It is a process that the shock waves enclosed in the gas pocket induce a periodic pressure with large amplitude variation in the gas jet. Consequently, the periodic pressure causes the jet oscillation including the large amplitude expansion. Detailed pressure measurements were also conducted to verify the shock wave feedback phenomenon. Three kinds of measuring methods were used, i.e., pressure probe submerged in water, pressure measurements from the side and front walls of the nozzle devices respectively. The results measured by these methods are in a good agreement. They show that every oscillation of the jets causes a sudden increase of pressure and the average frequency of the shock wave feedback is about 5–10 Hz.展开更多
The operating instability of a dual compensation chamber loop heat pipe (DCC-LHP) including temperature hysteresis, reverse flow and temperature oscillation is described and explained in this paper. Test results indic...The operating instability of a dual compensation chamber loop heat pipe (DCC-LHP) including temperature hysteresis, reverse flow and temperature oscillation is described and explained in this paper. Test results indicate that the steady state operating temperature under the variable conductance mode is not the same during the power cycle tests with the same heat load, and it is lower during the power reduction cycle than that during the power increase cycle. Orientation has an effect on the heat load range when temperature hysteresis occurs, and the effect of power variation amplitude can be ignored. Reverse flow tends to occur in some of the startups at low heat loads, even if vapor existed in the vapor grooves initially, which is caused by a higher pressure inside the wick due to evaporation in the evaporator core or vapor penetration into it. Temperature oscillation tends to occur in some of the startups at low head loads or some steady-state operations at high heat loads. Especially when the compensation chamber with the bayonet through is above the evaporator, the incidence rate of temperature oscillation is high.展开更多
Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this s...Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this study to recognize gas–liquid flow patterns by inducing fluid oscillation that enlarged differences between each flow pattern. Experiments with air–water mixtures were carried out in horizontal pipelines at ambient temperature and atmospheric pressure. Differential pressure signals from the bluff-body wake were obtained in bubble, bubble/plug transitional, plug, slug, and annular flows. Utilizing the adaptive ensemble empirical mode decomposition method and the Hilbert transform, the time–frequency entropy S of the differential pressure signals was obtained. By combining S and other flow parameters, such as the volumetric void fraction β, the dryness x, the ratio of density φ and the modified fluid coefficient ψ, a new flow pattern map was constructed which adopted S(1–x)φ and (1–β)ψ as the vertical and horizontal coordinates, respectively. The overall rate of classification of the map was verified to be 92.9% by the experimental data. It provides an effective and simple solution to the gas–liquid flow pattern identification problems.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 10672144)the Natural Science Foundation of Zhejiang Province of China (Grant No. Y107073.)
文摘An experimental research was carried out to study the fluid mechanics of underwater supersonic gas jets. High pressure air was injected into a water tank through converging-diverging nozzles (Laval nozzles). The jets were operated at different conditions of over-, full- and under-expansions. The jet sequences were visualized using a CCD camera. It was found that the injection of supersonic air jets into water is always accompanied by strong flow oscillation, which is related to the phenomenon of shock waves feedback in the gas phase. The shock wave feedback is different from the acoustic feedback when a supersonic gas jet discharges into open air, which causes screech tone. It is a process that the shock waves enclosed in the gas pocket induce a periodic pressure with large amplitude variation in the gas jet. Consequently, the periodic pressure causes the jet oscillation including the large amplitude expansion. Detailed pressure measurements were also conducted to verify the shock wave feedback phenomenon. Three kinds of measuring methods were used, i.e., pressure probe submerged in water, pressure measurements from the side and front walls of the nozzle devices respectively. The results measured by these methods are in a good agreement. They show that every oscillation of the jets causes a sudden increase of pressure and the average frequency of the shock wave feedback is about 5–10 Hz.
基金Supported by the National Natural Science Foundation of China (Grant No. 50676006)
文摘The operating instability of a dual compensation chamber loop heat pipe (DCC-LHP) including temperature hysteresis, reverse flow and temperature oscillation is described and explained in this paper. Test results indicate that the steady state operating temperature under the variable conductance mode is not the same during the power cycle tests with the same heat load, and it is lower during the power reduction cycle than that during the power increase cycle. Orientation has an effect on the heat load range when temperature hysteresis occurs, and the effect of power variation amplitude can be ignored. Reverse flow tends to occur in some of the startups at low heat loads, even if vapor existed in the vapor grooves initially, which is caused by a higher pressure inside the wick due to evaporation in the evaporator core or vapor penetration into it. Temperature oscillation tends to occur in some of the startups at low head loads or some steady-state operations at high heat loads. Especially when the compensation chamber with the bayonet through is above the evaporator, the incidence rate of temperature oscillation is high.
基金Project(51576213)supported by the National Natural Science Foundation of ChinaProject(2015RS4015)supported by the Hunan Scientific Program,ChinaProject(2016zzts323)supported by the Innovation Project of Central South University,China
文摘Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this study to recognize gas–liquid flow patterns by inducing fluid oscillation that enlarged differences between each flow pattern. Experiments with air–water mixtures were carried out in horizontal pipelines at ambient temperature and atmospheric pressure. Differential pressure signals from the bluff-body wake were obtained in bubble, bubble/plug transitional, plug, slug, and annular flows. Utilizing the adaptive ensemble empirical mode decomposition method and the Hilbert transform, the time–frequency entropy S of the differential pressure signals was obtained. By combining S and other flow parameters, such as the volumetric void fraction β, the dryness x, the ratio of density φ and the modified fluid coefficient ψ, a new flow pattern map was constructed which adopted S(1–x)φ and (1–β)ψ as the vertical and horizontal coordinates, respectively. The overall rate of classification of the map was verified to be 92.9% by the experimental data. It provides an effective and simple solution to the gas–liquid flow pattern identification problems.