A 7.8-μm surface emitting second-order distributed feedback quantum cascade laser (DFB QCL) structure with metallized surface grating is studied. The modal property of this structure is described by utilizing coupl...A 7.8-μm surface emitting second-order distributed feedback quantum cascade laser (DFB QCL) structure with metallized surface grating is studied. The modal property of this structure is described by utilizing coupled-mode theory where the coupling coefficients are derived from exact Floquet-Bloch solutions of infinite periodic structure. Based on this theory, the influence of waveguide structure and grating topography as well as device length on the laser performance is numerically investigated. The optimized surface emitting second-order DFB QCL structure design exhibits a high surface outcoupling efficiency of 22% and a low threshold gain of 10 cm-1. Using a π phase-shift in the centre of the grating, a high-quality single-lobe far-field radiation pattern is obtained.展开更多
In this paper,the bandgap characteristics of a missing rib lattice structure composed of beam elements are investigated by using the Floquet-Bloch theorem.The tuning of the width and position of the bandgap is achieve...In this paper,the bandgap characteristics of a missing rib lattice structure composed of beam elements are investigated by using the Floquet-Bloch theorem.The tuning of the width and position of the bandgap is achieved by changing the local structural parameters,i.e.,the rotation angle,the short beam length,and the beam thickness.In order to expand the regulation of the bandgap,the influence of the material parameters of the crossed long beams inside the structure on the bandgap is analyzed.The results show that the mass density and stiffness of the structure have significant effects on the bandgap,while Poisson’s ratio has no effect on the bandgap.By analyzing the first ten bands of the reference unit cell,it can be found that the missing rib lattice structure generates multiple local resonance bandgaps for vibration reduction,and these bandgap widths are wider.The modal analysis reveals that the formation of the bandgap is due to the dipole resonance of the lattice structure,and this dipole resonance originates from the coupling of the bending deformation of the beam elements.In the band structure,the vibrational mode of the 9th band with a negative slope corresponds to a rotational resonance,which is different from that with the conventional negative slope formed by the coupling of two resonance modes.This study can provide a theoretical reference for the design of simple and lightweight elastic metamaterials,as well as for the regulation of bandgaps and the suppression of elastic waves.展开更多
In this work we improve and extend a technique named recursive doubling procedure developed by Yuan and Lu[J.Lightwave Technology 25(2007),3649-3656]for solving periodic array problems.It turns out that when the perio...In this work we improve and extend a technique named recursive doubling procedure developed by Yuan and Lu[J.Lightwave Technology 25(2007),3649-3656]for solving periodic array problems.It turns out that when the periodic array contains an infinite number of periodic cells,our method gives a fast evaluation of the exact boundary Robin-to-Robin mapping if the wave number is complex,or real but in the stop bands.This technique is also used to solve the time-dependent Schr¨odinger equation in both one and two dimensions,when the periodic potential functions have some local defects.展开更多
基金Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 60525406)the National Natural Science Foundation of China (Grant Nos. 60736031,60806018,and 60906026)+1 种基金the National Basic Research Program of China (Grant No. 2006CB604903)the National High Technology Research and Development Program of China (Grant Nos. 2007AA03Z446 and 2009AA03Z403)
文摘A 7.8-μm surface emitting second-order distributed feedback quantum cascade laser (DFB QCL) structure with metallized surface grating is studied. The modal property of this structure is described by utilizing coupled-mode theory where the coupling coefficients are derived from exact Floquet-Bloch solutions of infinite periodic structure. Based on this theory, the influence of waveguide structure and grating topography as well as device length on the laser performance is numerically investigated. The optimized surface emitting second-order DFB QCL structure design exhibits a high surface outcoupling efficiency of 22% and a low threshold gain of 10 cm-1. Using a π phase-shift in the centre of the grating, a high-quality single-lobe far-field radiation pattern is obtained.
基金supported by the National Natural Science Foundation of China(Nos.11872233,11472163,and 12102245)。
文摘In this paper,the bandgap characteristics of a missing rib lattice structure composed of beam elements are investigated by using the Floquet-Bloch theorem.The tuning of the width and position of the bandgap is achieved by changing the local structural parameters,i.e.,the rotation angle,the short beam length,and the beam thickness.In order to expand the regulation of the bandgap,the influence of the material parameters of the crossed long beams inside the structure on the bandgap is analyzed.The results show that the mass density and stiffness of the structure have significant effects on the bandgap,while Poisson’s ratio has no effect on the bandgap.By analyzing the first ten bands of the reference unit cell,it can be found that the missing rib lattice structure generates multiple local resonance bandgaps for vibration reduction,and these bandgap widths are wider.The modal analysis reveals that the formation of the bandgap is due to the dipole resonance of the lattice structure,and this dipole resonance originates from the coupling of the bending deformation of the beam elements.In the band structure,the vibrational mode of the 9th band with a negative slope corresponds to a rotational resonance,which is different from that with the conventional negative slope formed by the coupling of two resonance modes.This study can provide a theoretical reference for the design of simple and lightweight elastic metamaterials,as well as for the regulation of bandgaps and the suppression of elastic waves.
文摘In this work we improve and extend a technique named recursive doubling procedure developed by Yuan and Lu[J.Lightwave Technology 25(2007),3649-3656]for solving periodic array problems.It turns out that when the periodic array contains an infinite number of periodic cells,our method gives a fast evaluation of the exact boundary Robin-to-Robin mapping if the wave number is complex,or real but in the stop bands.This technique is also used to solve the time-dependent Schr¨odinger equation in both one and two dimensions,when the periodic potential functions have some local defects.