为了研究絮团的形态对絮团与气泡碰撞及吸附的影响,设计了图像分析系统,拍摄了絮团与气泡接触过程中的视频文件并从中提取含有絮团位置及形态特征的静态帧。使用Image Pro Plus 6.0根据絮团的粒径对絮团进行了粒度级的划分,使用统计学...为了研究絮团的形态对絮团与气泡碰撞及吸附的影响,设计了图像分析系统,拍摄了絮团与气泡接触过程中的视频文件并从中提取含有絮团位置及形态特征的静态帧。使用Image Pro Plus 6.0根据絮团的粒径对絮团进行了粒度级的划分,使用统计学的方法,对每个粒度级的絮团与气泡的碰撞及吸附效率进行了分析及计算,发现碰撞效率随絮团粒径的增加而增长,吸附效率先随着粒径的增加而增长但是在絮团粒径为200μm左右时出现转折,开始下降。利用Matlab位置提取程序对絮团运动过程中位置信息进行获取,根据Stokes沉降原理,计算絮团密度,发现絮团的密度随着粒径的规律性变化,在粒径为170μm时密度最大。认为絮团粒径对碰撞效率起主导作用,絮团密度对吸附效率起主导作用。此外,通过观测絮团与气泡接触过程发现,结构密实的絮团自与气泡发生接触后接触点恒定,而结构疏松的絮团与气泡接触后普遍存在旋转的现象,接触点的变化,导致结构疏松的絮团极易从气泡上脱落,吸附效率低。展开更多
文摘为了研究絮团的形态对絮团与气泡碰撞及吸附的影响,设计了图像分析系统,拍摄了絮团与气泡接触过程中的视频文件并从中提取含有絮团位置及形态特征的静态帧。使用Image Pro Plus 6.0根据絮团的粒径对絮团进行了粒度级的划分,使用统计学的方法,对每个粒度级的絮团与气泡的碰撞及吸附效率进行了分析及计算,发现碰撞效率随絮团粒径的增加而增长,吸附效率先随着粒径的增加而增长但是在絮团粒径为200μm左右时出现转折,开始下降。利用Matlab位置提取程序对絮团运动过程中位置信息进行获取,根据Stokes沉降原理,计算絮团密度,发现絮团的密度随着粒径的规律性变化,在粒径为170μm时密度最大。认为絮团粒径对碰撞效率起主导作用,絮团密度对吸附效率起主导作用。此外,通过观测絮团与气泡接触过程发现,结构密实的絮团自与气泡发生接触后接触点恒定,而结构疏松的絮团与气泡接触后普遍存在旋转的现象,接触点的变化,导致结构疏松的絮团极易从气泡上脱落,吸附效率低。