Modern high speed printing machines are able to print up to 700 m/min. At this rate, little excita-tions lead to vibrations, which may lead to loss of contact between the rollers (bouncing). This bouncing results in w...Modern high speed printing machines are able to print up to 700 m/min. At this rate, little excita-tions lead to vibrations, which may lead to loss of contact between the rollers (bouncing). This bouncing results in white stripes, being visible on the printed image. To enable the simulation of the whole printing process, including effects like bouncing, a discrete multibody model is developed. The rollers are modeled by several rigid bodies. These bodies are connected to each other by rotational springs, which allow simulation of the first bending eigenmodes of each roller. The contact area between the rollers is modeled by several nonlinear translational springs and damping elements. These elements change their stiffness and damping values depending on the distance between the rollers. If a defined distance is exceeded, the values become zero, which represents the loss of contact (bouncing). The unknown spring and damping elements of this model are parametrized with help of an experimental modal analysis. This paper presents the development of a flexible multibody model to simulate nonlinear effects in printing process.展开更多
The realization of color conversions in accordance with the ICC technology is the basis of quality management in modern desktop publishing systems.An important point is that the result depends on the specific technolo...The realization of color conversions in accordance with the ICC technology is the basis of quality management in modern desktop publishing systems.An important point is that the result depends on the specific technological process,therefore the fine adjustment of the control systemis required.For such a multi-step process as flexographic printing展开更多
The effect of grid shape on the properties of transparent conductive films(TCFs) is theoretically analyzed and experimentally verified. The light transmittance by three types of grid shapes: triangle, square and hexag...The effect of grid shape on the properties of transparent conductive films(TCFs) is theoretically analyzed and experimentally verified. The light transmittance by three types of grid shapes: triangle, square and hexagon have been theoretically calculated and simulated. It was found that hexagonal grid unit has the highest light transmittance limit under the practical lattice parameters and its decrease in light transmittance caused by the increase of line width in printing process is the least. The grid of three different shapes with same theoretical transmittance is fabricated through flexographic printing. The result shows that the actual light transmittance of the printed TCFs is lower than its theoretical value because of the inevitable width increase of printed grid lines, with slight difference between the three shapes. However, it is greatly different in terms of conductivity, leading to variation in the quality factor Q(defined as the ratio of light transmittance to total resistance) which represents the performance of TCFs. The Q of hexagonal grid(6.04) is the highest, which is 21% higher than that of the square grid.展开更多
文摘Modern high speed printing machines are able to print up to 700 m/min. At this rate, little excita-tions lead to vibrations, which may lead to loss of contact between the rollers (bouncing). This bouncing results in white stripes, being visible on the printed image. To enable the simulation of the whole printing process, including effects like bouncing, a discrete multibody model is developed. The rollers are modeled by several rigid bodies. These bodies are connected to each other by rotational springs, which allow simulation of the first bending eigenmodes of each roller. The contact area between the rollers is modeled by several nonlinear translational springs and damping elements. These elements change their stiffness and damping values depending on the distance between the rollers. If a defined distance is exceeded, the values become zero, which represents the loss of contact (bouncing). The unknown spring and damping elements of this model are parametrized with help of an experimental modal analysis. This paper presents the development of a flexible multibody model to simulate nonlinear effects in printing process.
文摘The realization of color conversions in accordance with the ICC technology is the basis of quality management in modern desktop publishing systems.An important point is that the result depends on the specific technological process,therefore the fine adjustment of the control systemis required.For such a multi-step process as flexographic printing
基金supported by the Beijing Municipal Commission of Education Foundation for School Innovation Ability Promotion Plan(Grant No.TJSHG201310015016)the Key Project of Beijing Institute of Graphic Communication(Grant No.Ea201501)the Creative Groups of Materials and Technology of Printed Electronics(Grant No.23190113100)
文摘The effect of grid shape on the properties of transparent conductive films(TCFs) is theoretically analyzed and experimentally verified. The light transmittance by three types of grid shapes: triangle, square and hexagon have been theoretically calculated and simulated. It was found that hexagonal grid unit has the highest light transmittance limit under the practical lattice parameters and its decrease in light transmittance caused by the increase of line width in printing process is the least. The grid of three different shapes with same theoretical transmittance is fabricated through flexographic printing. The result shows that the actual light transmittance of the printed TCFs is lower than its theoretical value because of the inevitable width increase of printed grid lines, with slight difference between the three shapes. However, it is greatly different in terms of conductivity, leading to variation in the quality factor Q(defined as the ratio of light transmittance to total resistance) which represents the performance of TCFs. The Q of hexagonal grid(6.04) is the highest, which is 21% higher than that of the square grid.