Certain insect species have been observed to exploit the resonance mechanism of their wings.In order to achieve resonance and optimize aerodynamic performance,the conventional approach is to set the flapping frequency...Certain insect species have been observed to exploit the resonance mechanism of their wings.In order to achieve resonance and optimize aerodynamic performance,the conventional approach is to set the flapping frequency of flexible wings based on the Traditional Structural Modal(TSM)analysis.However,there exists controversy among researchers regarding the relationship between frequency and aerodynamic performance.Recognizing that the structural response of wings can be influenced by the surrounding air vibrations,an analysis known as Acoustic Structure Interaction Modal(ASIM)is introduced to calculate the resonant frequency.In this study,Fluid Structure Interaction(FSI)simulations are employed to investigate the aerodynamic performance of flapping wings at modal frequencies derived from both TSM and ASIM analyses.The performance is evaluated for various mass ratios and frequency ratios,and the findings indicate that the deformation and changes in vortex structure exhibit similarities at mass ratios that yield the highest aerodynamic performance.Notably,the flapping frequency associated with the maximum time-averaged vertical force coefficient at each mass ratio closely aligns with the ASIM frequency,as does the frequency corresponding to maximum efficiency.Thus,the ASIM analysis can provide an effective means for predicting the optimal flapping frequency for flexible wings.Furthermore,it enables the prediction that flexible wings with varying mass ratios will exhibit similar deformation and vortex structure changes.This paper offers a fresh perspective on the ongoing debate concerning the resonance mechanism of Flexible Flapping Wings(FFWs)and proposes an effective methodology for predicting their aerodynamic performance.展开更多
The flexibility of flapping-wing strongly affects the aerodynamic performance of Flapping-wing Micro Air Vehicle (FMAV),and the deformations in span-wise and chord-wise directions are coupled together in flight.In thi...The flexibility of flapping-wing strongly affects the aerodynamic performance of Flapping-wing Micro Air Vehicle (FMAV),and the deformations in span-wise and chord-wise directions are coupled together in flight.In this study,the flexible deformation is formulated in span-wise and chord-wise separately in order to analyze its effects on aerodynamic behavior.The preconditioned Navier-Stokes equations based on chimera grid are used in the computational fluid dynamics method to study the aerodynamic effects caused by flexible deformation,and the simulation results are compared with experimental test to illustrate the capability of above method.Based on our results,it is clearly showed that the span-wise flexible deformation should be limited in a small range to achieve higher aerodynamic performance and the chord-wise deformation could enhance the aerodynamic performance.The results also suggest that FMAV designers should design the flapping-wing with high stiffness leading edge to limit the span-wise deformation,and more flexible chord ribs to keep chord-wise deformation in suitable range.展开更多
The self-propulsion of a 3-D flapping flexible plate in a stationary fluid is numerically studied by an immersed boundarylattice Boltzmann method for the fluid flow and a finite element method for the plate motion. Wh...The self-propulsion of a 3-D flapping flexible plate in a stationary fluid is numerically studied by an immersed boundarylattice Boltzmann method for the fluid flow and a finite element method for the plate motion. When the leading-edge of the plate is forced to heave sinusoidally, the entire plate starts to move freely as a result of the fluid-structure interaction. Based on our simulation and analysis on the dynamical behaviors of the flapping flexible plate, we have found that the effect of plate aspect ratio on its propulsive properties can be divided into three typical regimes which are related to the plate flexibility, i.e. stiff, medium flexible, and more flexible regime. It is also identified that a suitable structure flexibility, corresponding to the medium flexible regime, can improve the propulsive speed and efficiency. The wake behind the flapping plate is investigated for several aspect ratios to demonstrate some typical vortical structures. The results obtained in this study can provide some physical insights into the understanding of the propulsive mechanisms in the flapping-based locomotion.展开更多
基金This study was co-supported by the National Natural Science Foundation of China(No.52275293)the Guangdong Basic and Applied Basic Research Foundation,China(No.2023A1515010774)+1 种基金the Basic Research Program of Shenzhen,China(No.JCYJ 20190806142816524)the National Key Laboratory of Science and Technology on Aerodynamic Design and Research,China(No.61422010301).
文摘Certain insect species have been observed to exploit the resonance mechanism of their wings.In order to achieve resonance and optimize aerodynamic performance,the conventional approach is to set the flapping frequency of flexible wings based on the Traditional Structural Modal(TSM)analysis.However,there exists controversy among researchers regarding the relationship between frequency and aerodynamic performance.Recognizing that the structural response of wings can be influenced by the surrounding air vibrations,an analysis known as Acoustic Structure Interaction Modal(ASIM)is introduced to calculate the resonant frequency.In this study,Fluid Structure Interaction(FSI)simulations are employed to investigate the aerodynamic performance of flapping wings at modal frequencies derived from both TSM and ASIM analyses.The performance is evaluated for various mass ratios and frequency ratios,and the findings indicate that the deformation and changes in vortex structure exhibit similarities at mass ratios that yield the highest aerodynamic performance.Notably,the flapping frequency associated with the maximum time-averaged vertical force coefficient at each mass ratio closely aligns with the ASIM frequency,as does the frequency corresponding to maximum efficiency.Thus,the ASIM analysis can provide an effective means for predicting the optimal flapping frequency for flexible wings.Furthermore,it enables the prediction that flexible wings with varying mass ratios will exhibit similar deformation and vortex structure changes.This paper offers a fresh perspective on the ongoing debate concerning the resonance mechanism of Flexible Flapping Wings(FFWs)and proposes an effective methodology for predicting their aerodynamic performance.
基金supported by the Postdoctoral Science Foundation of China(20100481369)
文摘The flexibility of flapping-wing strongly affects the aerodynamic performance of Flapping-wing Micro Air Vehicle (FMAV),and the deformations in span-wise and chord-wise directions are coupled together in flight.In this study,the flexible deformation is formulated in span-wise and chord-wise separately in order to analyze its effects on aerodynamic behavior.The preconditioned Navier-Stokes equations based on chimera grid are used in the computational fluid dynamics method to study the aerodynamic effects caused by flexible deformation,and the simulation results are compared with experimental test to illustrate the capability of above method.Based on our results,it is clearly showed that the span-wise flexible deformation should be limited in a small range to achieve higher aerodynamic performance and the chord-wise deformation could enhance the aerodynamic performance.The results also suggest that FMAV designers should design the flapping-wing with high stiffness leading edge to limit the span-wise deformation,and more flexible chord ribs to keep chord-wise deformation in suitable range.
基金supported by the National Natural Science Foun-dation of China(Grant No.11372304)the 111 Project(Grant No.B07033)
文摘The self-propulsion of a 3-D flapping flexible plate in a stationary fluid is numerically studied by an immersed boundarylattice Boltzmann method for the fluid flow and a finite element method for the plate motion. When the leading-edge of the plate is forced to heave sinusoidally, the entire plate starts to move freely as a result of the fluid-structure interaction. Based on our simulation and analysis on the dynamical behaviors of the flapping flexible plate, we have found that the effect of plate aspect ratio on its propulsive properties can be divided into three typical regimes which are related to the plate flexibility, i.e. stiff, medium flexible, and more flexible regime. It is also identified that a suitable structure flexibility, corresponding to the medium flexible regime, can improve the propulsive speed and efficiency. The wake behind the flapping plate is investigated for several aspect ratios to demonstrate some typical vortical structures. The results obtained in this study can provide some physical insights into the understanding of the propulsive mechanisms in the flapping-based locomotion.