Nanoparticles are considered to be a powerful approach for the delivery of poorly watersoluble drugs. One of the main challenges is developing an appropriate method for preparation of drug nanoparticles. As a simple, ...Nanoparticles are considered to be a powerful approach for the delivery of poorly watersoluble drugs. One of the main challenges is developing an appropriate method for preparation of drug nanoparticles. As a simple, rapid and scalable method, the flash nanoprecipitation(FNP) has been widely used to fabricate these drug nanoparticles, including pure drug nanocrystals, polymeric micelles,polymeric nanoparticles, solid lipid nanoparticles, and polyelectrolyte complexes. This review introduces the application of FNP to produce poorly water-soluble drug nanoparticles by controllable mixing devices, such as confined impinging jets mixer(CIJM), multi-inlet vortex mixer(MIVM) and many other microfluidic mixer systems. The formation mechanisms and processes of drug nanoparticles by FNP are described in detail. Then, the controlling of supersaturation level and mixing rate during the FNP process to tailor the ultrafine drug nanoparticles as well as the influence of drugs, solvent, anti-solvent, stabilizers and temperature on the fabrication are discussed. The ultrafine and uniform nanoparticles of poorly watersoluble drug nanoparticles prepared by CIJM, MIVM and microfluidic mixer systems are reviewed briefly. We believe that the application of microfluidic mixing devices in laboratory with continuous process control and good reproducibility will be benefit for industrial formulation scale-up.展开更多
Nanoparticles have been given considerable attention and applied in many fields because of their properties that are superior to and more distinct than those of conventional materials. In practice, a stable and reprod...Nanoparticles have been given considerable attention and applied in many fields because of their properties that are superior to and more distinct than those of conventional materials. In practice, a stable and reproducible manufacturing process is highly desirable. This review presents the flash nanoprecipitation, a new technique that can rapidly produce nanoparticles. Moreover, the mixing process, the mechanism of particle formation, and the mixer design are discussed.Furthermore, the factors controlling the size stability of the produced nanoparticles are summarised in this review.展开更多
基金supported by Research Committee of University of Macao (MYRG2017-00200-ICMS)Macao Science and Technology Development Fund (FDCT 0013/2018/A1)
文摘Nanoparticles are considered to be a powerful approach for the delivery of poorly watersoluble drugs. One of the main challenges is developing an appropriate method for preparation of drug nanoparticles. As a simple, rapid and scalable method, the flash nanoprecipitation(FNP) has been widely used to fabricate these drug nanoparticles, including pure drug nanocrystals, polymeric micelles,polymeric nanoparticles, solid lipid nanoparticles, and polyelectrolyte complexes. This review introduces the application of FNP to produce poorly water-soluble drug nanoparticles by controllable mixing devices, such as confined impinging jets mixer(CIJM), multi-inlet vortex mixer(MIVM) and many other microfluidic mixer systems. The formation mechanisms and processes of drug nanoparticles by FNP are described in detail. Then, the controlling of supersaturation level and mixing rate during the FNP process to tailor the ultrafine drug nanoparticles as well as the influence of drugs, solvent, anti-solvent, stabilizers and temperature on the fabrication are discussed. The ultrafine and uniform nanoparticles of poorly watersoluble drug nanoparticles prepared by CIJM, MIVM and microfluidic mixer systems are reviewed briefly. We believe that the application of microfluidic mixing devices in laboratory with continuous process control and good reproducibility will be benefit for industrial formulation scale-up.
基金financially supported by the National Natural Science Foundation of China(No.21544005)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.15KJB430034)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Nanoparticles have been given considerable attention and applied in many fields because of their properties that are superior to and more distinct than those of conventional materials. In practice, a stable and reproducible manufacturing process is highly desirable. This review presents the flash nanoprecipitation, a new technique that can rapidly produce nanoparticles. Moreover, the mixing process, the mechanism of particle formation, and the mixer design are discussed.Furthermore, the factors controlling the size stability of the produced nanoparticles are summarised in this review.