期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Arriving at a correlation between the flagellar arrangement and multicellularity
1
作者 Suruchi Jamkhedkar Jyotsna Dongerdive +2 位作者 Kavita Jain Siby Abraham Jacinta S. D’Souza 《Advances in Bioscience and Biotechnology》 2013年第1期93-102,共10页
Cilia and flagella are organelles of motility that enable cells to swim or move liquid over its surface. An exhaustive literature survey for the presence of the organelle in organisms across phyla showed that most ani... Cilia and flagella are organelles of motility that enable cells to swim or move liquid over its surface. An exhaustive literature survey for the presence of the organelle in organisms across phyla showed that most animal cells harbor cilia in contrast to very few fungal cells. While this was not unexpected, it was the position and arrangement of this organelle in each cell that intrigued our attention. Natural selection might have favored motility over chemotaxis;and it would have done so to evolve a stable structure that could have undergone an optimization process requiring a precise geometry in the shape of cells and the structure that would help cells to move. The positioning of such a structure would play a pre-dominant role in optimal motility. It is now known that the flagellar position of a cell is a genetically distinct trait, occasionally used in phylogeny of bacteria, distributed in distinguishing patterns over cellular surface, but basically are of two types, either polar (one flagellum arising from one pole per cell) or peritrichous (lateral flagella distributed over the entire cell surface). Irrespective of the cellular habitat, flagella origin, ultrastructure and proteome, the present investigation surveyed 26 sub-types of flagellar arrangements from as many species as possible. A peculiar pattern ensued-Prokaryotes harbored predominantly polar and peritrichous types;eukaryotes showed a mere change of the peritrichous one. These numbers when used to create a Similarity tree depicted a similarity distance of 14 between the Eubacteria and Archaebacteria forming the first neighborhood;Protozoans, Algae, Fungi, Plantae and Animalia formed a second neighborhood. We offer a working hypothesis for this pattern and the gradual shift in the flagellar arrangement from polar, peritrichous, sub-apical, and apical to lateral throughout evolution. 展开更多
关键词 FLAGELLA CILIA POLAR Peritrichous MULTICELLULARITY flagellar arrangement
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部