In this paper, we will prove that Ky Fan’s Theorem (Math. Z. 112(1969), 234-240) is true for 1-set-contractive maps defined on a bounded closed convex subset K in a Banach space with int K≠ . This class of 1-set-con...In this paper, we will prove that Ky Fan’s Theorem (Math. Z. 112(1969), 234-240) is true for 1-set-contractive maps defined on a bounded closed convex subset K in a Banach space with int K≠ . This class of 1-set-contractive maps includes condensing maps, nonexpansive maps, semicontractive maps, LANE maps and others. As applications of our theorems, some fixed point theorems of non-self- maps are proved under various well-known boundary conditions. Our results are generalizations and improvements of the recent results obtained by many authors.展开更多
In this paper, we introduce the concept of generalized g-quasi-contractions in the setting of cone b-metric spaces over Banach algebras. By omitting the assump- tion of normality we establish common fixed point theore...In this paper, we introduce the concept of generalized g-quasi-contractions in the setting of cone b-metric spaces over Banach algebras. By omitting the assump- tion of normality we establish common fixed point theorems for the generalized g- quasi-contractions with the spectral radius r(λ) of the g-quasi-contractive constant vector λ satisfying r(λ) ∈[0,1) in the setting of cone b-metric spaces over Banach al- gebras, where the coefficient s satisfies s ≥ 1. The main results generalize, extend and unify several well-known comparable results in the literature.展开更多
This article deals with the existence of solutions of nonlinear fractional pantograph equations. Such model can be considered suitable to be applied when the corresponding process occurs through strongly anomalous med...This article deals with the existence of solutions of nonlinear fractional pantograph equations. Such model can be considered suitable to be applied when the corresponding process occurs through strongly anomalous media. The results are obtained using fractional calculus and fixed point theorems. An example is provided to illustrate the main result obtained in this article.展开更多
This paper is devoted to the applications of classical topological degrees to nonlinear problems involving various classes of operators acting between ordered Banach spaces. In this framework, the Leray-Schauder, Brow...This paper is devoted to the applications of classical topological degrees to nonlinear problems involving various classes of operators acting between ordered Banach spaces. In this framework, the Leray-Schauder, Browder-Petryshyn, and Amann-Weiss degree theories are considered, and several existence results are obtained. The non-Archimedean case is also discussed.展开更多
基金Project supported by the National Natural Science Foundation of ChinaNatural Science Foundation of Shandong Province of China
文摘In this paper, we will prove that Ky Fan’s Theorem (Math. Z. 112(1969), 234-240) is true for 1-set-contractive maps defined on a bounded closed convex subset K in a Banach space with int K≠ . This class of 1-set-contractive maps includes condensing maps, nonexpansive maps, semicontractive maps, LANE maps and others. As applications of our theorems, some fixed point theorems of non-self- maps are proved under various well-known boundary conditions. Our results are generalizations and improvements of the recent results obtained by many authors.
基金supported by the National Natural Science Foundation of China(No.11361064)the project No.174024 of the Ministry of Education,Science and Technological Department of the Republic of Serbia
文摘In this paper, we introduce the concept of generalized g-quasi-contractions in the setting of cone b-metric spaces over Banach algebras. By omitting the assump- tion of normality we establish common fixed point theorems for the generalized g- quasi-contractions with the spectral radius r(λ) of the g-quasi-contractive constant vector λ satisfying r(λ) ∈[0,1) in the setting of cone b-metric spaces over Banach al- gebras, where the coefficient s satisfies s ≥ 1. The main results generalize, extend and unify several well-known comparable results in the literature.
基金UGC New Delhi for providing BSR fellowshipproject MTM2010-16499 from the MICINN of Spain
文摘This article deals with the existence of solutions of nonlinear fractional pantograph equations. Such model can be considered suitable to be applied when the corresponding process occurs through strongly anomalous media. The results are obtained using fractional calculus and fixed point theorems. An example is provided to illustrate the main result obtained in this article.
文摘This paper is devoted to the applications of classical topological degrees to nonlinear problems involving various classes of operators acting between ordered Banach spaces. In this framework, the Leray-Schauder, Browder-Petryshyn, and Amann-Weiss degree theories are considered, and several existence results are obtained. The non-Archimedean case is also discussed.