Abstract The existence of n positive solutions for a class of third-order three-point boundary value problems is investigated, where n is an arbitrary natural number. The main tool is Krasnosel'skii fixed point th...Abstract The existence of n positive solutions for a class of third-order three-point boundary value problems is investigated, where n is an arbitrary natural number. The main tool is Krasnosel'skii fixed point theorem on the cone.展开更多
By using the degree theory on cone an existence theorem of positive solution for a class of fourth-order two-point BVP's is obtained. This class of BVP's usually describes the deformation of the elastic beam w...By using the degree theory on cone an existence theorem of positive solution for a class of fourth-order two-point BVP's is obtained. This class of BVP's usually describes the deformation of the elastic beam with both fixed end-points.展开更多
This paper studies the existence of solutions for mixed monotone impulsive Volterra integral equations on the infinite interval R+ with an infinite number of moments of impulse effect in Banach spaces. By using the mi...This paper studies the existence of solutions for mixed monotone impulsive Volterra integral equations on the infinite interval R+ with an infinite number of moments of impulse effect in Banach spaces. By using the mixed monotone iterative technique and Monch fixed point theorem, Some existence theorems of solutions and coupled minimal and maximal quasisolutions are obtained. Finally, an example is worked out.展开更多
This paper is consider the boundary value problems of singular superlinear second order differential equations. A sufficient condition for the existence of positive solutions to this problem has been obtained by using...This paper is consider the boundary value problems of singular superlinear second order differential equations. A sufficient condition for the existence of positive solutions to this problem has been obtained by using the fixed point theorems on cones.展开更多
This paper studies the existence of multiple positive solutions of nonresonant singular boundary value problem of second order ordinary differential equations. A sufficient condition for the existence of C[0,1] multip...This paper studies the existence of multiple positive solutions of nonresonant singular boundary value problem of second order ordinary differential equations. A sufficient condition for the existence of C[0,1] multiple positive solutions as well as C1[0, 1] multiple positive solutions is given by means of the fixed point theorems on cones.展开更多
文摘Abstract The existence of n positive solutions for a class of third-order three-point boundary value problems is investigated, where n is an arbitrary natural number. The main tool is Krasnosel'skii fixed point theorem on the cone.
文摘By using the degree theory on cone an existence theorem of positive solution for a class of fourth-order two-point BVP's is obtained. This class of BVP's usually describes the deformation of the elastic beam with both fixed end-points.
文摘This paper studies the existence of solutions for mixed monotone impulsive Volterra integral equations on the infinite interval R+ with an infinite number of moments of impulse effect in Banach spaces. By using the mixed monotone iterative technique and Monch fixed point theorem, Some existence theorems of solutions and coupled minimal and maximal quasisolutions are obtained. Finally, an example is worked out.
文摘This paper is consider the boundary value problems of singular superlinear second order differential equations. A sufficient condition for the existence of positive solutions to this problem has been obtained by using the fixed point theorems on cones.
基金Research supported by YNSF of Shandong Province(Y2000A06).
文摘This paper studies the existence of multiple positive solutions of nonresonant singular boundary value problem of second order ordinary differential equations. A sufficient condition for the existence of C[0,1] multiple positive solutions as well as C1[0, 1] multiple positive solutions is given by means of the fixed point theorems on cones.