A posteriori error estimate of the discontinuous-streamline diffusion method for first-order hyperbolic equations was presented, which can be used to adjust space mesh reasonably. A numerical example is given to illus...A posteriori error estimate of the discontinuous-streamline diffusion method for first-order hyperbolic equations was presented, which can be used to adjust space mesh reasonably. A numerical example is given to illustrate the accuracy and feasibility of this method.展开更多
A new modification of the Method of Lines is proposed for the solution of first order partial differential equations. The accuracy of the method is shown with the matrix analysis. The method is applied to a number of ...A new modification of the Method of Lines is proposed for the solution of first order partial differential equations. The accuracy of the method is shown with the matrix analysis. The method is applied to a number of test problems, on uniform grids, to compare the accuracy and computational efficiency with the standard method.展开更多
In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial deriv...In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial derivative term and the forward and backward Euler method to discretize the time derivative term, the explicit and implicit upwind difference schemes are obtained respectively. It is proved that the explicit upwind scheme is conditionally stable and the implicit upwind scheme is unconditionally stable. Then the convergence of the schemes is derived. Numerical examples verify the results of theoretical analysis.展开更多
文摘A posteriori error estimate of the discontinuous-streamline diffusion method for first-order hyperbolic equations was presented, which can be used to adjust space mesh reasonably. A numerical example is given to illustrate the accuracy and feasibility of this method.
文摘A new modification of the Method of Lines is proposed for the solution of first order partial differential equations. The accuracy of the method is shown with the matrix analysis. The method is applied to a number of test problems, on uniform grids, to compare the accuracy and computational efficiency with the standard method.
文摘In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial derivative term and the forward and backward Euler method to discretize the time derivative term, the explicit and implicit upwind difference schemes are obtained respectively. It is proved that the explicit upwind scheme is conditionally stable and the implicit upwind scheme is unconditionally stable. Then the convergence of the schemes is derived. Numerical examples verify the results of theoretical analysis.