The integration and accommodation of the wind and solar energy pose great challenges on today’s power system operation due to the intermittent nature and volatility of the wind and solar resources.High efficient larg...The integration and accommodation of the wind and solar energy pose great challenges on today’s power system operation due to the intermittent nature and volatility of the wind and solar resources.High efficient large-scale electrical energy storage is one of the most effective and economical solutions to those problems.After the comprehensive review of the existing storage technologies,this paper proposes an overall design scheme for the Non-supplementary Fired Compressed Air Energy Storage(NFCAES)system,including system design,modeling and efficiency assessment,as well as protection and control.Especially,the design principles of the multistage regenerative,i.e.heat recovery system which is used to fully recycle and utilize the waste heat from compression are provided,so as the overall system efficiency evaluation method.This paper theoretically ascertains the storage decoupling rules in the potential and internal energy of molecular compressed air and reveals the conversion mechanism of gas,heat,power,electricity and other forms of energy.On this basis,a 500-k W physical simulation system of CAES system(TICC-500,Tsinghua-IPCCAS-CEPRI-CAES)is built,which passed a system-wide 420-k W load power generation test with less pollution and zero carbon emissions.Besides,the multi-form energy conversion of multi-stage regenerative CAES and storage efficiency is verified,especially its incomparable superiority in solving the uncertainty problem in wind and solar power generation.Finally,the propaganda and application scenario of the CAES system in China is introduced.展开更多
To utilize heat and electricity in a clean and integrated manner,a zero-carbon-emission micro Energy Internet(ZCE-MEI) architecture is proposed by incorporating non-supplementary fired compressed air energy storage(NS...To utilize heat and electricity in a clean and integrated manner,a zero-carbon-emission micro Energy Internet(ZCE-MEI) architecture is proposed by incorporating non-supplementary fired compressed air energy storage(NSF-CAES) hub.A typical ZCE-MEI combining power distribution network(PDN) and district heating network(DHN) with NSF-CAES is considered in this paper.NSF-CAES hub is formulated to take the thermal dynamic and pressure behavior into account to enhance dispatch flexibility.A modified Dist Flow model is utilized to allow several discrete and continuous reactive power compensators to maintain voltage quality of PDN.Optimal operation of the ZCE-MEI is firstly modeled as a mixed integer nonlinear programming(MINLP).Several transformations and simplifications are taken to convert the problem as a mixed integer linear programming(MILP)which can be effectively solved by CPLEX.A typical test system composed of a NSF-CAES hub,a 33-bus PDN,and an 8-node DHN is adopted to verify the effectiveness of the proposed ZCE-MEI in terms of reducing operation cost and wind curtailment.展开更多
Focusing on the phenomenon of gypsum rain while wet desulphurization(WFGD) were adopted in coal fired power plant without GGH, the paper studied and put forward the solutions : (1) desulfurization facilities related e...Focusing on the phenomenon of gypsum rain while wet desulphurization(WFGD) were adopted in coal fired power plant without GGH, the paper studied and put forward the solutions : (1) desulfurization facilities related equipment modification;(2) optimal operation of existing desulfurization facilities.展开更多
This work presents a computational investigation of hydrodynamics,coal combustion and NOx emissions in a tangentially fired pulverized coal boiler at different loads(630,440 and 300 MW;relative loads of 100%,70%and 48...This work presents a computational investigation of hydrodynamics,coal combustion and NOx emissions in a tangentially fired pulverized coal boiler at different loads(630,440 and 300 MW;relative loads of 100%,70%and 48%)to clarify the effect of load change on the furnace processes.A computational fluids dynamics model was established;the flow field,temperature profile,species concentration and NOx emissions were predicted numerically;and the influence of burner tilt angles was evaluated.Simulation results indicate that a decrease in boiler load decreases the gas velocity,attenuates the airflow rotations,and increases the tangent circle size.The high-temperature zone and flame moved toward the side walls.Such behaviors impair air-fuel mixing,heat transfer and steady combustion in the furnace.In terms of species concentrations,a decrease in boiler load increased the O2 content,decreased the CO content,and decreased the char burnout rates only slightly.A change in boiler load from 630 to 440 and 300 MW increased the NOx emissions from 202 to 234 and 247 mg/m^(3),respectively.Burner tilt angles are important in coal combustion and NOx emissions.A burner angle of-15°favors heat transfer and low NOx emissions(<185 mg/m^(3))for the current tangentially fired boiler.展开更多
Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportio...Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportional integral derivative (PID) control scheme. For the characteristics of the main steam pressure in coal-fired power plant boiler, the sliding mode control system with Smith predictive structure is proposed to look for performance and robustness improvement. First, internal model control (IMC) and Smith predictor (SP) is used to deal with the time delay, and sliding mode controller (SMCr) is designed to overcome the model mismatch. Simulation results show the effectiveness of the proposed controller compared with conventional ones.展开更多
For improving the strength of pellets made of ultrafine and super-high-grade magnetite concentrates,the influence of basicity(CaO/SiO2 ratio)on the roasting and consolidation of pellets was investigated.The results sh...For improving the strength of pellets made of ultrafine and super-high-grade magnetite concentrates,the influence of basicity(CaO/SiO2 ratio)on the roasting and consolidation of pellets was investigated.The results showed that with the basicity of pellets increasing from 0.09 to 0.60,the compressive strength of both preheated and roasted pellets achieved an evident improvement from 502 and 2519 to 549 and 3096 N/pellet,respectively;meanwhile,the roasting time decreased from 15 to 9.min.The low-viscosity liquid phases were easily generated in fired pellets at the basicity range of 0.40-0.60 under the roasting temperature of 1240℃,filled the voids between hematite particles and tightened the bonding among particles,effectively restraining the generation of concentric cracks and decreasing the porosity of fired pellets;low-viscosity liquid phases facilitated the solid diffusion of hematite,leading to the formation of coarse hematite crystals and thicker connecting necks.展开更多
The objective of this paper is to provide the optimal choice of single-reheating or double-reheating when considering residual flue gas heat in S-CO_2 coal fired power system. The cascade utilization of flue gas energ...The objective of this paper is to provide the optimal choice of single-reheating or double-reheating when considering residual flue gas heat in S-CO_2 coal fired power system. The cascade utilization of flue gas energy includes three temperature levels, with high and low temperature ranges of flue gas heat extracted by S-CO_2 cycle and air preheater, respectively. Two methods are proposed to absorb residual flue gas heat Qre in middle temperature range. Both methods shall decrease CO_2 temperature entering the boiler T4 and increase secondary air temperature Tsec air, whose maximum value is deduced based on energy conservation in air preheater. The system is analyzed incorporating thermodynamics, boiler pressure drop and energy distribution. It is shown that at a given main vapor temperature T5, the main vapor pressure P5 can be adjusted to a value so that Qre is completely eliminated, which is called the main vapor pressure adjustment method. For this method, single-reheating is only available for higher main vapor temperatures. The power generation efficiency for single-reheating is obviously higher than double-reheating. If residual flue gas heat does exist, a flue gas heater FGC is integrated with S-CO_2 cycle, which is called the FGC method. Both single-reheating and double-reheating share similar power generation efficiency, but single-reheating creates less residual flue gas heat. We conclude that single-reheating is preferable, and the pressure adjustment method achieves obviously higher power generation efficiency than the FGC method.展开更多
The in-situ instrumentation technique for measuring mercury and itsspeciation downstream a utility 100 MW pulverized coal (PC) fired boiler system was developed andconducted by the use of the Ontario hydro method (OHM...The in-situ instrumentation technique for measuring mercury and itsspeciation downstream a utility 100 MW pulverized coal (PC) fired boiler system was developed andconducted by the use of the Ontario hydro method (OHM) consistent with American standard test methodtogether with the semi-continuous emissions monitoring (SCEM) system as well as a mobile laboratoryfor mercury monitoring. The mercury and its speciation concentrations including participate mercuryat three locations of before air preheater, before electrostatic precipitator (ESP) and after ESPwere measured using the OHM and SCEM methods under normal operation conditions of the boiler systemas a result of firing a bituminous coal. The vapor-phase total mercury Hg(VT) concentration declinedwith the decrease of flue gas temperature because of mercury species transformation from oxidizedmercury to particulate mercury as the flue gas moved downstream from the air preheater to the ESPand after the ESP. A good agreement for Hg°, Hg^(2+) and Hg( VT) was obtained between the twomethods in the ash-free area. But in the dense particle-laden flue gas area, there appeared to be abig bias for mercury speciation owing to dust cake formed in the filter of OHM sampling probe. Theparticulateaffinity to the flue gas mercury and the impacts of sampling condition to accuracy ofmeasure were discussed.展开更多
Air-gun is an important active seismic source.With the development of the theory about air-gun array,the technique for air-gun array design becomes mature and is widely used in petroleum exploration and geophysics.In ...Air-gun is an important active seismic source.With the development of the theory about air-gun array,the technique for air-gun array design becomes mature and is widely used in petroleum exploration and geophysics.In order to adapt it to different research domains,different combination and fired models are needed.At the present time,there are two fired models of air-gun source,namely,reinforced initial pulse and reinforced first bubble pulse.The fired time,space between single guns,frequency and resolution of the two models are different.This comparison can supply the basis for its extensive application.展开更多
Clay materials from Thicky in Thiès district (Senegal) are very abundant and could be used for the production of clay brick for the construction industry in Senegal and the surrounding countries. The geophysical,...Clay materials from Thicky in Thiès district (Senegal) are very abundant and could be used for the production of clay brick for the construction industry in Senegal and the surrounding countries. The geophysical, geotechnical, and thermal studies carried out did lead to a better comprehension of the potential of the area for clay production. It also allowed determining the physical and chemical characteristics of the clays for their use in order to make fired clay bricks. Different types of fired clay brick were produced with Thicky’s clays. The study of the physical, mechanical and thermal parameters of these raw materials and bricks has given very satisfactory results compared to the standards in use. It is noted a good ceramic behavior, and there is no deterioration observed after firing at 900°C until low residual moisture of about 3% (on a dry basis), a smooth texture with a beautiful appearance, a low loss on ignition, a low shrinkage value of less than 1% (dry), moderate water absorption and also good compressive strength. The study of thermal properties on a brick wall by the asymmetric lime plane method gives satisfactory effusivity and thermal conductivity values which are respectively equal to 746.48 J<span style="white-space:nowrap;"><span style="white-space:nowrap;">·</span></span>K<sup>-1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">·</span></span>m<sup>-2</sup><span style="white-space:nowrap;">·</span>s<sup>-1/2</sup> and 0.42 W<span style="white-space:nowrap;"><span style="white-space:nowrap;">·</span></span>m<sup>-1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">·</span></span>k<sup>-1</sup> with a thermal resistance of 0.0028 m<sup>2</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">·</span></span>K<span style="white-space:nowrap;"><span style="white-space:nowrap;">·</span></span>W<sup>-1</sup>.展开更多
This study deals with the physico-chemical, mineralogical and geotechnical characterization of alluvial clays from Batchenga in Cameroon with a view to their use as building materials for housing. The alluvial clay (A...This study deals with the physico-chemical, mineralogical and geotechnical characterization of alluvial clays from Batchenga in Cameroon with a view to their use as building materials for housing. The alluvial clay (Arg.All) was collected in the locality of Batchenga at the village Natchigal (4˚20'40''N and 11˚37'40''E at 378 m altitude) and was fired between 900˚C and 1100˚C. Characterization was performed by XRD, XRF, DTA/DTG, and firing tests. XRD, XRF, DTA/DTG infrared analysis methods were performed on these clays. The linear shrinkage, mechanical strengths, water absorption, porosity and density were measured on the fired products. The results obtained show that the major oxides are for the Arg.Lat SiO<sub>2</sub> (72.13%), Al<sub>2</sub>O<sub>3 </sub>(14.1%), Fe<sub>2</sub>O<sub>3</sub> (4.45%) and for the Arg.All: SiO<sub>2</sub> (48.91%), Al<sub>2</sub>O<sub>3</sub> (23.79%), Fe<sub>2</sub>O<sub>3</sub> (9.54%). The fired products based on alluvial clay, present the flexural strength of 4.45 MPa at 900˚C and 6.80 MPa at 1100˚C. As for those based on lateritic clay, the flexural strength is 0.53 and 0.76 MPa respectively at 900 and 1100˚C. The porosity is 33.69% at 900˚C and 22.93% at 1100˚C for the alluvial clay and 39.55% at 900˚C and 36.01% for the lateritic clay at 1100˚C. Water absorption is 18% to 11.16% for alluvial clay and 22.43% to 21.16% for lateritic clay at 900˚C and 1100˚C respectively. These results suggest that alluvial clay and its firing products have better physico-chemical, geotechnical and mechanical characteristics regardless of the firing temperature of the manufactured products. The addition of degreaser is recommended to improve the mechanical performance of lateritic clay.展开更多
The influence of basicity on the metallurgical performances and reduction characteristics of fired super high-grade magnetite pellets under the simulated shaft furnace gas conditions was investigated.The fired pellets...The influence of basicity on the metallurgical performances and reduction characteristics of fired super high-grade magnetite pellets under the simulated shaft furnace gas conditions was investigated.The fired pellets in the basicity range of 0.09(natural basicity)to 1.00 show superior reducibility and low-temperature disintegration performance.However,in the basicity range of 0.20–0.80,the abnormal swelling of the fired pellets occurs.Improving basicity from 0.09 to 0.40 promotes the generation of low melting point slag phases and lower porosity of fired pellets,and accelerates the growth and densification of hematite crystals,impeding the reduction of hematite particles and the formation of metallic iron shell.In addition,the slags that distribute between the hematite particles absorb the reduction stresses by increased distances between the particles during the reduction process,which leads to the large reduction swelling of pellets.展开更多
The Shenqiu meteorite was investigated by Mossbauer spectroscopy at room temperature, atomic absorption, X-ray diffraction and scanning electron microscopy. In order to determine fired conditions of the meteorite whic...The Shenqiu meteorite was investigated by Mossbauer spectroscopy at room temperature, atomic absorption, X-ray diffraction and scanning electron microscopy. In order to determine fired conditions of the meteorite which occurred during the meteorite fall, Shenqiu meteorite samples were fired in an oxidizing atmosphere and a reducing atmosphere at temperatures up to 1300℃, respectively. These samples also were fired at 800, 1000 and 1200 ℃ respectively for different time (up to 24 h).展开更多
基金Science and Technology Fund of SGCC(Grant No.KJ-2012-627)The National Natural Science Foundation of China(Grant No.51321005)
文摘The integration and accommodation of the wind and solar energy pose great challenges on today’s power system operation due to the intermittent nature and volatility of the wind and solar resources.High efficient large-scale electrical energy storage is one of the most effective and economical solutions to those problems.After the comprehensive review of the existing storage technologies,this paper proposes an overall design scheme for the Non-supplementary Fired Compressed Air Energy Storage(NFCAES)system,including system design,modeling and efficiency assessment,as well as protection and control.Especially,the design principles of the multistage regenerative,i.e.heat recovery system which is used to fully recycle and utilize the waste heat from compression are provided,so as the overall system efficiency evaluation method.This paper theoretically ascertains the storage decoupling rules in the potential and internal energy of molecular compressed air and reveals the conversion mechanism of gas,heat,power,electricity and other forms of energy.On this basis,a 500-k W physical simulation system of CAES system(TICC-500,Tsinghua-IPCCAS-CEPRI-CAES)is built,which passed a system-wide 420-k W load power generation test with less pollution and zero carbon emissions.Besides,the multi-form energy conversion of multi-stage regenerative CAES and storage efficiency is verified,especially its incomparable superiority in solving the uncertainty problem in wind and solar power generation.Finally,the propaganda and application scenario of the CAES system in China is introduced.
基金supported in part by the National Natural Science Foundation of China(No.51321005,No.51377092,No.51577163)Opening Foundation of the Qinghai Province Key Laboratory of Photovoltaic Power Generation and Grid-connected Technology
文摘To utilize heat and electricity in a clean and integrated manner,a zero-carbon-emission micro Energy Internet(ZCE-MEI) architecture is proposed by incorporating non-supplementary fired compressed air energy storage(NSF-CAES) hub.A typical ZCE-MEI combining power distribution network(PDN) and district heating network(DHN) with NSF-CAES is considered in this paper.NSF-CAES hub is formulated to take the thermal dynamic and pressure behavior into account to enhance dispatch flexibility.A modified Dist Flow model is utilized to allow several discrete and continuous reactive power compensators to maintain voltage quality of PDN.Optimal operation of the ZCE-MEI is firstly modeled as a mixed integer nonlinear programming(MINLP).Several transformations and simplifications are taken to convert the problem as a mixed integer linear programming(MILP)which can be effectively solved by CPLEX.A typical test system composed of a NSF-CAES hub,a 33-bus PDN,and an 8-node DHN is adopted to verify the effectiveness of the proposed ZCE-MEI in terms of reducing operation cost and wind curtailment.
文摘Focusing on the phenomenon of gypsum rain while wet desulphurization(WFGD) were adopted in coal fired power plant without GGH, the paper studied and put forward the solutions : (1) desulfurization facilities related equipment modification;(2) optimal operation of existing desulfurization facilities.
基金The authors acknowledge the support from the National Nature Science Foundation of China(No.51476058)and SINOPEC project(No.318015-6).
文摘This work presents a computational investigation of hydrodynamics,coal combustion and NOx emissions in a tangentially fired pulverized coal boiler at different loads(630,440 and 300 MW;relative loads of 100%,70%and 48%)to clarify the effect of load change on the furnace processes.A computational fluids dynamics model was established;the flow field,temperature profile,species concentration and NOx emissions were predicted numerically;and the influence of burner tilt angles was evaluated.Simulation results indicate that a decrease in boiler load decreases the gas velocity,attenuates the airflow rotations,and increases the tangent circle size.The high-temperature zone and flame moved toward the side walls.Such behaviors impair air-fuel mixing,heat transfer and steady combustion in the furnace.In terms of species concentrations,a decrease in boiler load increased the O2 content,decreased the CO content,and decreased the char burnout rates only slightly.A change in boiler load from 630 to 440 and 300 MW increased the NOx emissions from 202 to 234 and 247 mg/m^(3),respectively.Burner tilt angles are important in coal combustion and NOx emissions.A burner angle of-15°favors heat transfer and low NOx emissions(<185 mg/m^(3))for the current tangentially fired boiler.
基金Supported by the National Natural Science Foundation of China (61174059, 60934007, 61233004)the National Basic Research Program of China (2013CB035406)Shanghai Rising-Star Tracking Program (11QH1401300)
文摘Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportional integral derivative (PID) control scheme. For the characteristics of the main steam pressure in coal-fired power plant boiler, the sliding mode control system with Smith predictive structure is proposed to look for performance and robustness improvement. First, internal model control (IMC) and Smith predictor (SP) is used to deal with the time delay, and sliding mode controller (SMCr) is designed to overcome the model mismatch. Simulation results show the effectiveness of the proposed controller compared with conventional ones.
基金The authors want to express their gratitude for the financial support from the National Natural Science Foundation of China(No.51474161)would like to thank the Hunan Provincial Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,which supplied us the facilities and funds to complete the experiments.
文摘For improving the strength of pellets made of ultrafine and super-high-grade magnetite concentrates,the influence of basicity(CaO/SiO2 ratio)on the roasting and consolidation of pellets was investigated.The results showed that with the basicity of pellets increasing from 0.09 to 0.60,the compressive strength of both preheated and roasted pellets achieved an evident improvement from 502 and 2519 to 549 and 3096 N/pellet,respectively;meanwhile,the roasting time decreased from 15 to 9.min.The low-viscosity liquid phases were easily generated in fired pellets at the basicity range of 0.40-0.60 under the roasting temperature of 1240℃,filled the voids between hematite particles and tightened the bonding among particles,effectively restraining the generation of concentric cracks and decreasing the porosity of fired pellets;low-viscosity liquid phases facilitated the solid diffusion of hematite,leading to the formation of coarse hematite crystals and thicker connecting necks.
基金supported by the National Key R&D Program of China (2017YFB0601801)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (51821004)the Fundamental Research Funds for the Central Universities (2018ZD02 and 2018QN042)
文摘The objective of this paper is to provide the optimal choice of single-reheating or double-reheating when considering residual flue gas heat in S-CO_2 coal fired power system. The cascade utilization of flue gas energy includes three temperature levels, with high and low temperature ranges of flue gas heat extracted by S-CO_2 cycle and air preheater, respectively. Two methods are proposed to absorb residual flue gas heat Qre in middle temperature range. Both methods shall decrease CO_2 temperature entering the boiler T4 and increase secondary air temperature Tsec air, whose maximum value is deduced based on energy conservation in air preheater. The system is analyzed incorporating thermodynamics, boiler pressure drop and energy distribution. It is shown that at a given main vapor temperature T5, the main vapor pressure P5 can be adjusted to a value so that Qre is completely eliminated, which is called the main vapor pressure adjustment method. For this method, single-reheating is only available for higher main vapor temperatures. The power generation efficiency for single-reheating is obviously higher than double-reheating. If residual flue gas heat does exist, a flue gas heater FGC is integrated with S-CO_2 cycle, which is called the FGC method. Both single-reheating and double-reheating share similar power generation efficiency, but single-reheating creates less residual flue gas heat. We conclude that single-reheating is preferable, and the pressure adjustment method achieves obviously higher power generation efficiency than the FGC method.
文摘The in-situ instrumentation technique for measuring mercury and itsspeciation downstream a utility 100 MW pulverized coal (PC) fired boiler system was developed andconducted by the use of the Ontario hydro method (OHM) consistent with American standard test methodtogether with the semi-continuous emissions monitoring (SCEM) system as well as a mobile laboratoryfor mercury monitoring. The mercury and its speciation concentrations including participate mercuryat three locations of before air preheater, before electrostatic precipitator (ESP) and after ESPwere measured using the OHM and SCEM methods under normal operation conditions of the boiler systemas a result of firing a bituminous coal. The vapor-phase total mercury Hg(VT) concentration declinedwith the decrease of flue gas temperature because of mercury species transformation from oxidizedmercury to particulate mercury as the flue gas moved downstream from the air preheater to the ESPand after the ESP. A good agreement for Hg°, Hg^(2+) and Hg( VT) was obtained between the twomethods in the ash-free area. But in the dense particle-laden flue gas area, there appeared to be abig bias for mercury speciation owing to dust cake formed in the filter of OHM sampling probe. Theparticulateaffinity to the flue gas mercury and the impacts of sampling condition to accuracy ofmeasure were discussed.
基金The research was funded under the project of NSFC(Grant number:NSFC40234038)Joint Earthquake Science Foundation,China(Grant No.105108)
文摘Air-gun is an important active seismic source.With the development of the theory about air-gun array,the technique for air-gun array design becomes mature and is widely used in petroleum exploration and geophysics.In order to adapt it to different research domains,different combination and fired models are needed.At the present time,there are two fired models of air-gun source,namely,reinforced initial pulse and reinforced first bubble pulse.The fired time,space between single guns,frequency and resolution of the two models are different.This comparison can supply the basis for its extensive application.
文摘Clay materials from Thicky in Thiès district (Senegal) are very abundant and could be used for the production of clay brick for the construction industry in Senegal and the surrounding countries. The geophysical, geotechnical, and thermal studies carried out did lead to a better comprehension of the potential of the area for clay production. It also allowed determining the physical and chemical characteristics of the clays for their use in order to make fired clay bricks. Different types of fired clay brick were produced with Thicky’s clays. The study of the physical, mechanical and thermal parameters of these raw materials and bricks has given very satisfactory results compared to the standards in use. It is noted a good ceramic behavior, and there is no deterioration observed after firing at 900°C until low residual moisture of about 3% (on a dry basis), a smooth texture with a beautiful appearance, a low loss on ignition, a low shrinkage value of less than 1% (dry), moderate water absorption and also good compressive strength. The study of thermal properties on a brick wall by the asymmetric lime plane method gives satisfactory effusivity and thermal conductivity values which are respectively equal to 746.48 J<span style="white-space:nowrap;"><span style="white-space:nowrap;">·</span></span>K<sup>-1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">·</span></span>m<sup>-2</sup><span style="white-space:nowrap;">·</span>s<sup>-1/2</sup> and 0.42 W<span style="white-space:nowrap;"><span style="white-space:nowrap;">·</span></span>m<sup>-1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">·</span></span>k<sup>-1</sup> with a thermal resistance of 0.0028 m<sup>2</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">·</span></span>K<span style="white-space:nowrap;"><span style="white-space:nowrap;">·</span></span>W<sup>-1</sup>.
文摘This study deals with the physico-chemical, mineralogical and geotechnical characterization of alluvial clays from Batchenga in Cameroon with a view to their use as building materials for housing. The alluvial clay (Arg.All) was collected in the locality of Batchenga at the village Natchigal (4˚20'40''N and 11˚37'40''E at 378 m altitude) and was fired between 900˚C and 1100˚C. Characterization was performed by XRD, XRF, DTA/DTG, and firing tests. XRD, XRF, DTA/DTG infrared analysis methods were performed on these clays. The linear shrinkage, mechanical strengths, water absorption, porosity and density were measured on the fired products. The results obtained show that the major oxides are for the Arg.Lat SiO<sub>2</sub> (72.13%), Al<sub>2</sub>O<sub>3 </sub>(14.1%), Fe<sub>2</sub>O<sub>3</sub> (4.45%) and for the Arg.All: SiO<sub>2</sub> (48.91%), Al<sub>2</sub>O<sub>3</sub> (23.79%), Fe<sub>2</sub>O<sub>3</sub> (9.54%). The fired products based on alluvial clay, present the flexural strength of 4.45 MPa at 900˚C and 6.80 MPa at 1100˚C. As for those based on lateritic clay, the flexural strength is 0.53 and 0.76 MPa respectively at 900 and 1100˚C. The porosity is 33.69% at 900˚C and 22.93% at 1100˚C for the alluvial clay and 39.55% at 900˚C and 36.01% for the lateritic clay at 1100˚C. Water absorption is 18% to 11.16% for alluvial clay and 22.43% to 21.16% for lateritic clay at 900˚C and 1100˚C respectively. These results suggest that alluvial clay and its firing products have better physico-chemical, geotechnical and mechanical characteristics regardless of the firing temperature of the manufactured products. The addition of degreaser is recommended to improve the mechanical performance of lateritic clay.
基金The authors want to express their gratitude for the financial support from the National Natural Science Foundation of China(No.52004075)Science and Technology Planning Projects of Guizhou Province(No.ZK[2021]262)+1 种基金Program Foundation for Talents of Guizhou University(No.(2020)15)the Hunan Provincial Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources.
文摘The influence of basicity on the metallurgical performances and reduction characteristics of fired super high-grade magnetite pellets under the simulated shaft furnace gas conditions was investigated.The fired pellets in the basicity range of 0.09(natural basicity)to 1.00 show superior reducibility and low-temperature disintegration performance.However,in the basicity range of 0.20–0.80,the abnormal swelling of the fired pellets occurs.Improving basicity from 0.09 to 0.40 promotes the generation of low melting point slag phases and lower porosity of fired pellets,and accelerates the growth and densification of hematite crystals,impeding the reduction of hematite particles and the formation of metallic iron shell.In addition,the slags that distribute between the hematite particles absorb the reduction stresses by increased distances between the particles during the reduction process,which leads to the large reduction swelling of pellets.
基金The Project Supported by National Natural Science Foundation of China
文摘The Shenqiu meteorite was investigated by Mossbauer spectroscopy at room temperature, atomic absorption, X-ray diffraction and scanning electron microscopy. In order to determine fired conditions of the meteorite which occurred during the meteorite fall, Shenqiu meteorite samples were fired in an oxidizing atmosphere and a reducing atmosphere at temperatures up to 1300℃, respectively. These samples also were fired at 800, 1000 and 1200 ℃ respectively for different time (up to 24 h).