We present a theoretical study of the acoustic properties of graphene-semiconductor layered structures. The transmission coefficient for longitudinal acoustic waves through the structure is evaluated by using the usua...We present a theoretical study of the acoustic properties of graphene-semiconductor layered structures. The transmission coefficient for longitudinal acoustic waves through the structure is evaluated by using the usual transfer matrix method. We find that the finite thickness of the graphene layer can affect significantly the transmission spectrum of the proposed structure. The features of the sound transmittance depend strongly on the number of the graphene layers. For mul-ti-layer graphene-semiconductor structures, the sound transmission spectrum looks very similar to that for an ideal superlattice. For such structures, terahertz acoustic forbidden gap can be observed even when a thick semiconductor layer is considered. These results are the consequence of the Bragg’s condition for sound waves. This study is relevant to the exploration of the acoustic properties of graphene-based layered structures and to the application of graphene as high-frequency acoustic devices.展开更多
描述了爆炸成型弹丸(explosive formed projectile,EFP)对有限厚靶板的侵彻过程,建立了计算EFP对有限厚靶板侵彻过程参数的一维分析模型。基于该模型编制了程序代码,对EFP侵彻有限厚靶板的后效参量及极限穿透速度进行了计算,并和试验结...描述了爆炸成型弹丸(explosive formed projectile,EFP)对有限厚靶板的侵彻过程,建立了计算EFP对有限厚靶板侵彻过程参数的一维分析模型。基于该模型编制了程序代码,对EFP侵彻有限厚靶板的后效参量及极限穿透速度进行了计算,并和试验结果进行了比较。证明该模型能较准确地对EFP侵彻有限厚靶板后效参量进行计算。展开更多
In combination with a wave action balance equation, a damping model for sea waves covered by oil films of a finite thickness is proposed. The damping model is not only related to the physical parameters of the oil fil...In combination with a wave action balance equation, a damping model for sea waves covered by oil films of a finite thickness is proposed. The damping model is not only related to the physical parameters of the oil film, but also related to environment parameters. Meanwhile, the parametric analyses have been also conducted to understand the sensitivity of the damping model to these parameters. And numerical simulations demonstrate that a kinematic viscosity, a surface/interfacial elasticity, a thickness, and a fractional filling factor cause more significant effects on a damping ratio than the other physical parameters of the oil film. From the simulation it is also found that the influences induced by a wind speed and a wind direction are also remarkable. On the other hand, for a thick emulsified oil film, the damping effect on the radar signal induced by the reduction of an effective dielectric constant should also be taken into account. The simulated results are compared with the damping ratio evaluated by the 15 ENVISAT ASAR images acquired during the Gulf of Mexico oil spill accident.展开更多
文摘We present a theoretical study of the acoustic properties of graphene-semiconductor layered structures. The transmission coefficient for longitudinal acoustic waves through the structure is evaluated by using the usual transfer matrix method. We find that the finite thickness of the graphene layer can affect significantly the transmission spectrum of the proposed structure. The features of the sound transmittance depend strongly on the number of the graphene layers. For mul-ti-layer graphene-semiconductor structures, the sound transmission spectrum looks very similar to that for an ideal superlattice. For such structures, terahertz acoustic forbidden gap can be observed even when a thick semiconductor layer is considered. These results are the consequence of the Bragg’s condition for sound waves. This study is relevant to the exploration of the acoustic properties of graphene-based layered structures and to the application of graphene as high-frequency acoustic devices.
文摘描述了爆炸成型弹丸(explosive formed projectile,EFP)对有限厚靶板的侵彻过程,建立了计算EFP对有限厚靶板侵彻过程参数的一维分析模型。基于该模型编制了程序代码,对EFP侵彻有限厚靶板的后效参量及极限穿透速度进行了计算,并和试验结果进行了比较。证明该模型能较准确地对EFP侵彻有限厚靶板后效参量进行计算。
基金The Young Scientists Fund of the National Natural Science Foundation of China under contract No.41106153China Postdoctoral Science Foundation Funded Project under contract No.2012M521293
文摘In combination with a wave action balance equation, a damping model for sea waves covered by oil films of a finite thickness is proposed. The damping model is not only related to the physical parameters of the oil film, but also related to environment parameters. Meanwhile, the parametric analyses have been also conducted to understand the sensitivity of the damping model to these parameters. And numerical simulations demonstrate that a kinematic viscosity, a surface/interfacial elasticity, a thickness, and a fractional filling factor cause more significant effects on a damping ratio than the other physical parameters of the oil film. From the simulation it is also found that the influences induced by a wind speed and a wind direction are also remarkable. On the other hand, for a thick emulsified oil film, the damping effect on the radar signal induced by the reduction of an effective dielectric constant should also be taken into account. The simulated results are compared with the damping ratio evaluated by the 15 ENVISAT ASAR images acquired during the Gulf of Mexico oil spill accident.