期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多模态图和对抗哈希注意力网络的跨媒体细粒度表示学习
被引量:
3
1
作者
梁美玉
王笑笑
杜军平
《模式识别与人工智能》
EI
CSCD
北大核心
2022年第3期195-206,共12页
跨媒体数据搜索中不同媒体类型的数据间存在特征异构和语义鸿沟问题,且社交网络数据往往呈现语义稀疏性、多样性等特性.针对上述问题,文中提出基于多模态图和对抗哈希注意力网络的跨媒体细粒度表示学习模型,获取统一的跨媒体语义表示,...
跨媒体数据搜索中不同媒体类型的数据间存在特征异构和语义鸿沟问题,且社交网络数据往往呈现语义稀疏性、多样性等特性.针对上述问题,文中提出基于多模态图和对抗哈希注意力网络的跨媒体细粒度表示学习模型,获取统一的跨媒体语义表示,应用于社交网络跨媒体搜索.首先,构建图像-单词关联图,并基于图随机游走策略挖掘图像和文本单词间直接语义关联和隐含语义关联,实现语义关系扩展.然后,构建基于跨媒体协同注意力机制的跨媒体细粒度特征学习网络,通过互相指导的跨媒体注意力机制协同学习图像和文本的细粒度语义关联.最后,构建跨媒体对抗哈希网络,联合跨媒体细粒度语义关联学习和对抗哈希学习,获取高效紧凑的跨媒体统一哈希语义表示.实验表明,文中模型在两个公开标准跨媒体数据集上均取得较优的跨媒体搜索性能.
展开更多
关键词
跨媒体表示学习
对抗哈希注意力网络
细粒度表示学习
跨媒体协同注意力机制
跨媒体搜索
下载PDF
职称材料
题名
基于多模态图和对抗哈希注意力网络的跨媒体细粒度表示学习
被引量:
3
1
作者
梁美玉
王笑笑
杜军平
机构
北京邮电大学计算机学院(国家示范性软件学院)智能通信软件与多媒体北京市重点实验室
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2022年第3期195-206,共12页
基金
国家重点研发计划项目(No.2018YFB1402600)
国家自然科学基金项目(No.61877006,62192784)
中国人工智能学会-华为MindSpore学术奖励基金项目(No.S2021264)资助。
文摘
跨媒体数据搜索中不同媒体类型的数据间存在特征异构和语义鸿沟问题,且社交网络数据往往呈现语义稀疏性、多样性等特性.针对上述问题,文中提出基于多模态图和对抗哈希注意力网络的跨媒体细粒度表示学习模型,获取统一的跨媒体语义表示,应用于社交网络跨媒体搜索.首先,构建图像-单词关联图,并基于图随机游走策略挖掘图像和文本单词间直接语义关联和隐含语义关联,实现语义关系扩展.然后,构建基于跨媒体协同注意力机制的跨媒体细粒度特征学习网络,通过互相指导的跨媒体注意力机制协同学习图像和文本的细粒度语义关联.最后,构建跨媒体对抗哈希网络,联合跨媒体细粒度语义关联学习和对抗哈希学习,获取高效紧凑的跨媒体统一哈希语义表示.实验表明,文中模型在两个公开标准跨媒体数据集上均取得较优的跨媒体搜索性能.
关键词
跨媒体表示学习
对抗哈希注意力网络
细粒度表示学习
跨媒体协同注意力机制
跨媒体搜索
Keywords
Cross-Media
representation
learning
Adversarial
Hash
Attention
Network
fine
-
grained
representation
learning
Cross-Media
Collaborative
Attention
Mechanism
Cross-Media
Search
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多模态图和对抗哈希注意力网络的跨媒体细粒度表示学习
梁美玉
王笑笑
杜军平
《模式识别与人工智能》
EI
CSCD
北大核心
2022
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部