期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Importance of Generalized Logistic Distribution in Extreme Value Modeling 被引量:1
1
作者 K. Nidhin C. Chandran 《Applied Mathematics》 2013年第3期560-573,共14页
We consider a problem from stock market modeling, precisely, choice of adequate distribution of modeling extremal behavior of stock market data. Generalized extreme value (GEV) distribution and generalized Pareto (GP)... We consider a problem from stock market modeling, precisely, choice of adequate distribution of modeling extremal behavior of stock market data. Generalized extreme value (GEV) distribution and generalized Pareto (GP) distribution are the classical distributions for this problem. However, from 2004, [1] and many other researchers have been empirically showing that generalized logistic (GL) distribution is a better model than GEV and GP distributions in modeling extreme movement of stock market data. In this paper, we show that these results are not accidental. We prove the theoretical importance of GL distribution in extreme value modeling. For proving this, we introduce a general multivariate limit theorem and deduce some important multivariate theorems in probability as special cases. By using the theorem, we derive a limit theorem in extreme value theory, where GL distribution plays central role instead of GEV distribution. The proof of this result is parallel to the proof of classical extremal types theorem, in the sense that, it possess important characteristic in classical extreme value theory, for e.g. distributional property, stability, convergence and multivariate extension etc. 展开更多
关键词 financial risk modeling STOCK Market Analysis GENERALIZED Logistic DISTRIBUTION GENERALIZED Extreme Value DISTRIBUTION TAIL EQUIVALENCE Maximum Stability Random Sample size Limit DISTRIBUTION
下载PDF
金融投资风险货币量化预测的模型与分析 被引量:4
2
作者 尹钊 谭畅 《中央财经大学学报》 CSSCI 北大核心 2013年第7期43-46,共4页
本文针对金融投资风险问题,把数理分析方法与金融投资风险问题结合起来,针对马柯维茨模型没有反映损失的具体数量等不足,综合研究VaR方法和边际分析法,创建金融投资风险货币量化预测的模型,有助于金融体制建立行之有效的预警机制,在经... 本文针对金融投资风险问题,把数理分析方法与金融投资风险问题结合起来,针对马柯维茨模型没有反映损失的具体数量等不足,综合研究VaR方法和边际分析法,创建金融投资风险货币量化预测的模型,有助于金融体制建立行之有效的预警机制,在经济规划、投资决策支持等方面具有鲜明的实际背景和重要的应用价值。 展开更多
关键词 金融投资风险货币量化 数学模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部