借助于含非光滑分界面的耦合Bohoffer-Van der Pol(BVP)电路系统,引入周期慢变的交流电源,构建两频域尺度的Filippov系统。利用微分包含理论,分析了尺度因素与非光滑因素相互作用的机理。当周期激励频率远远小于系统固有频率时,选取适...借助于含非光滑分界面的耦合Bohoffer-Van der Pol(BVP)电路系统,引入周期慢变的交流电源,构建两频域尺度的Filippov系统。利用微分包含理论,分析了尺度因素与非光滑因素相互作用的机理。当周期激励频率远远小于系统固有频率时,选取适当参数,得到了具有滑动结构的复杂周期簇发振荡,并结合理论分析揭示了滑动结构的产生机制。数值结果与理论分析吻合较好。展开更多
实际系统中发生了多次与调速系统相关的超低频频率振荡(ultra-low frequency oscillation,ULFO)事故,含增强型死区(阶跃型死区)的电力系统是分段光滑但向量场不连续的Filippov系统,其振荡机理和影响因素复杂。针对含增强型死区的单机水...实际系统中发生了多次与调速系统相关的超低频频率振荡(ultra-low frequency oscillation,ULFO)事故,含增强型死区(阶跃型死区)的电力系统是分段光滑但向量场不连续的Filippov系统,其振荡机理和影响因素复杂。针对含增强型死区的单机水电系统,结合Filippov系统的非光滑分岔理论,分析典型死区下系统对扰动负荷参数的边界穿越型平衡点分岔和跨边界的非光滑极限环分岔特性。结果表明,切换型超低频频率振荡出现对应2种Filippov系统非光滑分岔:第1类为伴随稳定结点型平衡点消失(变为边界上伪平衡点)时,出现稳定非光滑极限环的类Hopf分岔,即对应发生无平衡点的切换型振荡;第2类对应着轨线发生C型非光滑分岔,此时,系统从无平衡点(或存在伪平衡点)变为稳定焦结点型平衡点,但系统轨线收敛到一个大范围的稳定非光滑极限环,即对应系统发生有稳定平衡点的切换型振荡。进一步,分析了不同死区大小(非光滑系统结构变化)对上述2种类型的非光滑分岔的影响,结果表明,增大死区一定程度上能增加系统忍受负荷扰动的能力,有利于系统稳定。展开更多
This paper discusses the problem of finite-time stability with respect to a closed, but not necessarily compact, invariant set for a class of nonlinear systems with discontinuous right-hand sides in the sense of the F...This paper discusses the problem of finite-time stability with respect to a closed, but not necessarily compact, invariant set for a class of nonlinear systems with discontinuous right-hand sides in the sense of the Filippov solutions. When the Lyapunov function is Lipschitz continuous and regular, the Lyapunov theorem on finite-time stability with respect to a closed invariant set is presented.展开更多
The uniformly ultimate boundedness of discontinuous systems with time-delay in the sense of Filippov solutions is discussed.Based on the Lyapunov-Krasovskii functional,the Lyapunov theorem for the globally strongly un...The uniformly ultimate boundedness of discontinuous systems with time-delay in the sense of Filippov solutions is discussed.Based on the Lyapunov-Krasovskii functional,the Lyapunov theorem for the globally strongly uniformly ultimate boundedness of retarded discontinuous systems is presented.Furthermore,the result is applied to a class of mechanical systems with a retarded discontinuous friction item.展开更多
文摘借助于含非光滑分界面的耦合Bohoffer-Van der Pol(BVP)电路系统,引入周期慢变的交流电源,构建两频域尺度的Filippov系统。利用微分包含理论,分析了尺度因素与非光滑因素相互作用的机理。当周期激励频率远远小于系统固有频率时,选取适当参数,得到了具有滑动结构的复杂周期簇发振荡,并结合理论分析揭示了滑动结构的产生机制。数值结果与理论分析吻合较好。
文摘实际系统中发生了多次与调速系统相关的超低频频率振荡(ultra-low frequency oscillation,ULFO)事故,含增强型死区(阶跃型死区)的电力系统是分段光滑但向量场不连续的Filippov系统,其振荡机理和影响因素复杂。针对含增强型死区的单机水电系统,结合Filippov系统的非光滑分岔理论,分析典型死区下系统对扰动负荷参数的边界穿越型平衡点分岔和跨边界的非光滑极限环分岔特性。结果表明,切换型超低频频率振荡出现对应2种Filippov系统非光滑分岔:第1类为伴随稳定结点型平衡点消失(变为边界上伪平衡点)时,出现稳定非光滑极限环的类Hopf分岔,即对应发生无平衡点的切换型振荡;第2类对应着轨线发生C型非光滑分岔,此时,系统从无平衡点(或存在伪平衡点)变为稳定焦结点型平衡点,但系统轨线收敛到一个大范围的稳定非光滑极限环,即对应系统发生有稳定平衡点的切换型振荡。进一步,分析了不同死区大小(非光滑系统结构变化)对上述2种类型的非光滑分岔的影响,结果表明,增大死区一定程度上能增加系统忍受负荷扰动的能力,有利于系统稳定。
基金supported by the Mathematical Tianyuan Foundation (No. 10826078)the National Natural Science Foundation of China (No. 60874006)
文摘This paper discusses the problem of finite-time stability with respect to a closed, but not necessarily compact, invariant set for a class of nonlinear systems with discontinuous right-hand sides in the sense of the Filippov solutions. When the Lyapunov function is Lipschitz continuous and regular, the Lyapunov theorem on finite-time stability with respect to a closed invariant set is presented.
基金supported by the National Natural Science Foundation of China (No. 60874006)
文摘The uniformly ultimate boundedness of discontinuous systems with time-delay in the sense of Filippov solutions is discussed.Based on the Lyapunov-Krasovskii functional,the Lyapunov theorem for the globally strongly uniformly ultimate boundedness of retarded discontinuous systems is presented.Furthermore,the result is applied to a class of mechanical systems with a retarded discontinuous friction item.