A high-sensitivity magnetic sensing system based on giant magneto-impedance(GMI)effect is designed and fabricated.The system comprises a GMI sensor equipped with a gradient probe and an signal acquisition and processi...A high-sensitivity magnetic sensing system based on giant magneto-impedance(GMI)effect is designed and fabricated.The system comprises a GMI sensor equipped with a gradient probe and an signal acquisition and processing module.A segmented superposition algorithm is used to increase target signal and reduce the random noise.The results show that under unshielded,room temperature conditions,the system achieves successful detection of weak magnetic fields down to 2 pT with a notable sensitivity of 1.84×10^(8)V/T(G=1000).By applying 17 overlays,the segmented superposition algorithm increases the power proportion of the target signal at 31 Hz from6.89%to 45.91%,surpassing the power proportion of the 2 Hz low-frequency interference signal.Simultaneously,it reduces the power proportion of the 20 Hz random noise.The segmented superposition process effectively cancels out certain random noise elements,leading to a reduction in their respective power proportions.This high-sensitivity magnetic sensing system features a simple structure,and is easy to operate,making it highly valuable for both practical applications and broader dissemination.展开更多
The nonlinearity has significant effect on the ultrasonic therapy using phased ar- rays. A numerical approach is developed to calculate the nonlinear sound field generated from a phased array based on the Gaussian sup...The nonlinearity has significant effect on the ultrasonic therapy using phased ar- rays. A numerical approach is developed to calculate the nonlinear sound field generated from a phased array based on the Gaussian superposition technique. The parameters of the phased array elements are first estimated from the focal parameters using the inverse matrix algorithm; Then the elements are expressed as a set of Gaussian functions; Finally, the nonlinear sound field can be calculated using the Gaussian superposition technique. In the numerical simulation, a 64~ 1 phased array is used as the transmitter. In the linear case, the difference between the results of the Gaussian superposition technique and the Fresnel integral is less than 0.5%, which verifies the feasibility of the approach. In the nonlinear case, the nonlinear fields of single-focus modes and double-focus modes are calculated. The results reveal that the nonlinear effects can improve the focusing performance, and the nonlinear effects are related with the source pressures and the excitation frequencies.展开更多
Some basic physics of burgeoning quantum neuroscience is described. Anatomy of the neuron suggests that nonsynaptic mechanisms of signal transmittance occur via electric current acceleration and companion electromagne...Some basic physics of burgeoning quantum neuroscience is described. Anatomy of the neuron suggests that nonsynaptic mechanisms of signal transmittance occur via electric current acceleration and companion electromagnetic field fluctuation. I have named this mechanism of solution chemistry the ebb effect. Phase-locking between neural structure and electric fields that are emergent from cellular EM field fluctuations, in addition to feedback loops within neural networks, are the probable driver of macroscopic oscillation and flow shapes in the brain. CEMI (conscious electromagnetic information) theory is a promising framework for explaining intentionality and the spectrum of arousal as EM field effects. Relatively low frequency electromagnetic radiation is emitted by the accelerating electric currents of neurons. It is hypothesized that this EM radiation superpositions with molecular structure as it spreads to comprise percepts, the hybrid wavelengths of which form subjective images while wavelength vibrations result in subjective feel. These superposition arrays are termed a coherence field, and in combination with the synchronizing influence of quantum entanglement and electromagnetic fluctuations may constitute much of awareness’ substance. If conclusively verified, coherence field theory should have significance ranging from the treatment of perceptual disorders such as anosognosia to advancing foundational constructs like atomic theory.展开更多
基金National Natural Science Foundation of China(No.51977214)。
文摘A high-sensitivity magnetic sensing system based on giant magneto-impedance(GMI)effect is designed and fabricated.The system comprises a GMI sensor equipped with a gradient probe and an signal acquisition and processing module.A segmented superposition algorithm is used to increase target signal and reduce the random noise.The results show that under unshielded,room temperature conditions,the system achieves successful detection of weak magnetic fields down to 2 pT with a notable sensitivity of 1.84×10^(8)V/T(G=1000).By applying 17 overlays,the segmented superposition algorithm increases the power proportion of the target signal at 31 Hz from6.89%to 45.91%,surpassing the power proportion of the 2 Hz low-frequency interference signal.Simultaneously,it reduces the power proportion of the 20 Hz random noise.The segmented superposition process effectively cancels out certain random noise elements,leading to a reduction in their respective power proportions.This high-sensitivity magnetic sensing system features a simple structure,and is easy to operate,making it highly valuable for both practical applications and broader dissemination.
基金supported by the National Basic Research Program 973(2011CB707900)National Natural Science Foundation of China(81127901,81227004,11174141,11274170 and 11161120324)+2 种基金the Natural Science Foundation of Jiangsu Province of China(BK2011543 and BE2011110)the National High Technology Research and Development Program 863(2012AA022700)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The nonlinearity has significant effect on the ultrasonic therapy using phased ar- rays. A numerical approach is developed to calculate the nonlinear sound field generated from a phased array based on the Gaussian superposition technique. The parameters of the phased array elements are first estimated from the focal parameters using the inverse matrix algorithm; Then the elements are expressed as a set of Gaussian functions; Finally, the nonlinear sound field can be calculated using the Gaussian superposition technique. In the numerical simulation, a 64~ 1 phased array is used as the transmitter. In the linear case, the difference between the results of the Gaussian superposition technique and the Fresnel integral is less than 0.5%, which verifies the feasibility of the approach. In the nonlinear case, the nonlinear fields of single-focus modes and double-focus modes are calculated. The results reveal that the nonlinear effects can improve the focusing performance, and the nonlinear effects are related with the source pressures and the excitation frequencies.
文摘Some basic physics of burgeoning quantum neuroscience is described. Anatomy of the neuron suggests that nonsynaptic mechanisms of signal transmittance occur via electric current acceleration and companion electromagnetic field fluctuation. I have named this mechanism of solution chemistry the ebb effect. Phase-locking between neural structure and electric fields that are emergent from cellular EM field fluctuations, in addition to feedback loops within neural networks, are the probable driver of macroscopic oscillation and flow shapes in the brain. CEMI (conscious electromagnetic information) theory is a promising framework for explaining intentionality and the spectrum of arousal as EM field effects. Relatively low frequency electromagnetic radiation is emitted by the accelerating electric currents of neurons. It is hypothesized that this EM radiation superpositions with molecular structure as it spreads to comprise percepts, the hybrid wavelengths of which form subjective images while wavelength vibrations result in subjective feel. These superposition arrays are termed a coherence field, and in combination with the synchronizing influence of quantum entanglement and electromagnetic fluctuations may constitute much of awareness’ substance. If conclusively verified, coherence field theory should have significance ranging from the treatment of perceptual disorders such as anosognosia to advancing foundational constructs like atomic theory.